The microstructure and shear behavior of Zn–25Sn–xTi solder joints with Ni substrate

  • Che-Wei ChangEmail author
  • Kwang-Lung Lin


The effect of Ti addition on the shear behavior of a Zn–25Sn–xTi solder bonding with Ni substrate at 25 °C and 100 °C was investigated. The microstructures of the solder joints had three different phases, which are the Zn-rich phase, laminar Sn-Zn eutectic phase, and the intermetallic compound with some pores. The average atomic composition of the intermetallic compound was 16.38 at.% Zn and 81.46 at.% Ni corresponding to a ratio of Ni to Zn of 1:4.63. The Ni5Zn21 intermetallic compounds were confirmed by Wavelength dispersive spectroscopy and X-ray diffraction analysis. The addition of Ti refined the Zn-rich phase. Moreover, compared with Pb–5Sn/Ni, the Zn–25Sn–xTi/Ni solder joints exhibited superior shear strength at 25 °C and 100 °C. The mechanical properties of the solder joints were further investigated with nanoindentation tests. The Ni5Zn21 intermetallic layer exhibited the lowest value of plasticity parameter compared with the solder matrix and substrate. Accordingly, shear fracture tended to occur in the IMC layer at room temperature.



The financial support for this study by the Ministry of Science and Technology, Republic of China (Taiwan) under MOST 107-2221-E-006-014-MY3 is gratefully acknowledged.


  1. 1.
    S. Menon, E. George, M. Osterman, M. Pecht, J. Mater. Sci. 26, 4021–4030 (2015)Google Scholar
  2. 2.
    L.N. Ramanathan, J.W. Jang, J.K. Lin, D.R. Frear, J. Electron. Mater. 34, 1357 (2005)CrossRefGoogle Scholar
  3. 3.
    Directive 2002/95/EC of the European Parliament and of the Council on the Restriction of the Use of Certain Hazardous Substances in Electrical and Electronic EquipmentGoogle Scholar
  4. 4.
    N.I. Sax, R.J. Lewis Sr., Dangerous Properties of Industrial Materials, 7th edn. (Van Nostrand Reinhold, New York, 1989), p. 2067Google Scholar
  5. 5.
    G. Zeng, S. McDonald, K. Nogita, Microelectron. Reliab. 52, 1306 (2012)CrossRefGoogle Scholar
  6. 6.
    T.B. Massalski, H. Okamoto, P.R. Subramanian, L. Kacprzak, Binary alloy phase diagrams, 2nd edn. (ASM Metals, Material Park, OH, 1986)Google Scholar
  7. 7.
    S. Kim, K.S. Kim, S.S. Kim, K. Suganuma, J. Electron. Mater. 38, 266–272 (2009)CrossRefGoogle Scholar
  8. 8.
    K. Suganuma, S.J. Kim, K.S. Kim, JOM 61, 64–71 (2009)CrossRefGoogle Scholar
  9. 9.
    S. Kim, K.S. Kim, S.S. Kim, K. Suganuma, G. Izuta, J. Electron. Mater. 38, 2668–2675 (2009)CrossRefGoogle Scholar
  10. 10.
    J.E. Lee, K.S. Kim, K. Suganuma, M. Inoue, G. Izuta, Mater. Trans. 48, 584–593 (2007)CrossRefGoogle Scholar
  11. 11.
    R. Mahmudi, M. Eslami, J. Mater. Sci. 22, 1168–1172 (2011)Google Scholar
  12. 12.
    R. Mahmudi, M. Eslami, J. Electron. Mater. 39, 2495–2502 (2010)CrossRefGoogle Scholar
  13. 13.
    R. Kolenak, M. Martinkovic, M. Kolenakova, Arch. Metall. Mater. 58, 529–533 (2013)CrossRefGoogle Scholar
  14. 14.
    X. Niu, K.L. Lin, J. Alloys Compd. 646, 852–858 (2015)CrossRefGoogle Scholar
  15. 15.
    C.W. Liu, K.L. Lin, J. Electron. Mater. 43, 4502–4509 (2014)CrossRefGoogle Scholar
  16. 16.
    X. Niu, K.L. Lin, Mater. Sci. Eng. A 677, 384 (2016)CrossRefGoogle Scholar
  17. 17.
    W.C. Huang, K.L. Lin, J. Electron. Mater. 45, 6137–6142 (2016)CrossRefGoogle Scholar
  18. 18.
    G.P. Vassilev, E. Dobrev, J.-C. Tedenac, JALCOM 407, 170–175 (2006)Google Scholar
  19. 19.
    G.P. Vassilev, E.S. Dobrev, J.-C. Tedenac, Res. Technol. 41(8), 739–741 (2006)CrossRefGoogle Scholar
  20. 20.
    C.W. Chang, K.L. Lin, J. Mater. Sci. 29, 10962 (2018)Google Scholar
  21. 21.
    C.W. Chang, K.L. Lin, J. Electron. Mater. 48, 135–141 (2019)CrossRefGoogle Scholar
  22. 22.
    C.H. Wang, S.W. Chen, Acta Mater. 54, 247 (2006)CrossRefGoogle Scholar
  23. 23.
    S.W. Chen, C.H. Wang, S.K. Lin, C.N. Chiu, J. Mater. Sci. 18, 19–37 (2007)Google Scholar
  24. 24.
    E.R. Jette, F. Foote, J. Chem. Phys. 3, 605–616 (1935)CrossRefGoogle Scholar
  25. 25.
    R.R. Pawar, V.T. Deshpande, Acta Crystallogr. A 24, 316–317 (1968)CrossRefGoogle Scholar
  26. 26.
    S.W. Chen, C.M. Hsu, C.Y. Chou, C.W. Hsu, Prog. Nat. Sci. 21, 386–391 (2011)CrossRefGoogle Scholar
  27. 27.
    K. Lange, Handbook of Metal Forming, 1st edn. (McGraw-Hill, New York, 1985), pp. 320–323Google Scholar
  28. 28.
    D.C. Stouffer, L.T. Dame, Inelastic Deformation of Metals: Models, Mechanical Properties, and Metallurgy (Wiley, Hoboken, 1996), pp. 6–21Google Scholar
  29. 29.
    W. Wang, K. Lu, J. Mater. Res. 17, 2314–2320 (2002)CrossRefGoogle Scholar
  30. 30.
    J.M. Song, P.C. Liu, C.L. Shih, K.L. Lin, J. Electron. Mater. 34, 1249–1254 (2005)CrossRefGoogle Scholar
  31. 31.
    W.C. Oliver, G.M. Pharr, J. Mater. Res. 7, 1564–1583 (1992)CrossRefGoogle Scholar
  32. 32.
    G. Sharma, R.V. Ramanujan, T.R.G. Kutty, N. Parbhu, Intermetallics 13, 2523 (2005)CrossRefGoogle Scholar
  33. 33.
    B.A. Galanov, O.N. Grigoriev, YuV Milman, I.P. Ragozin, V.I. Trefilov, DAN SSSR 214, 1399 (1984)Google Scholar
  34. 34.
    K.M. Kumar, V. Kripesh, L. Shen, K. Zeng, A.A.O. Tay, Mater. Sci. Eng. A 423, 57–63 (2006)CrossRefGoogle Scholar
  35. 35.
    Y.V. Milman, B.A. Galanov, S.I. Chugunova, Acta Metall. Mater. 41, 2523–2532 (1993)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Materials Science and EngineeringNational Cheng Kung UniversityTainanTaiwan, ROC

Personalised recommendations