Constructing efficient quasi-solid-state alkaline Ni–Fe battery based on Ni–Mn hydroxides/Ni3S2 and FeOOH@RGO electrodes

  • Lin Ye
  • Liya Feng
  • Lijun Zhao
  • Xiaohong Yang
  • Yuguang Zhao
  • Zuoxing Guo
  • Xu Liu
  • Dongye HeEmail author


Alkaline Ni–Fe battery has attracted extensive attentions due to low cost, fast preparation and easy portability. However, the energy-storage capacity of Ni–Fe battery is greatly restricted by low active area and poor electronic conductivity, so it is highly desirable to design suitable electrode materials. In our work, Ni–Mn hydroxides/Ni3S2 (Ni2Mn1-S) nanohybrid with nanosheet structure was successfully fabricated via tuning the Mn content and reaction conditions. The orderly open structure, heterogeneous Mn atoms and even-distributed Ni3S2 phase not only generate more electrochemical active sites, but also significantly promote electronic conductivity, thus enhancing electrochemical performance of hybrid structure. Servered as supercapacitive electrode, the Ni2Mn1-S presents high capacitance (1386.8 C g−1 at 1 A g−1), excellent rate performance (71% retention at 30 A g−1) and suitable cycling stability (79% retention after 5000 cycles). After the coating of RGO nanosheet, the FeOOH@RGO electrode achieves high capacity performance (180 C g−1 at 1 A g−1) and rate performance (66% retention even at 10 A g−1). Furthermore, quasi-solid-state Ni–Fe battery was developed, utilizing a positive Ni2Mn1-S electrode and a negative FeOOH@RGO electrode. The hybrid device could achieve high energy densities (53.8 Wh kg−1 at 820 W kg−1 and 26.2 Wh kg−1 at 8200 W kg−1) and still maintain 75% capacitance after enduring 5000 cycles, which attributes to fast diffusion dynamics of Ni2Mn1-S and FeOOH@RGO electrodes.



This work was financially supported by the Natural Science Fund Project of Jilin Province (Grant No. 20190201072 JC) and National Natural Science Foundation of China (Grant No. 51501068).

Supplementary material

10854_2019_1669_MOESM1_ESM.docx (4.9 mb)
Supplementary material 1 (DOCX 4998 kb)


  1. 1.
    N. Tuyen, M.F. Montemor, Redox active materials for metal compound based hybrid electrochemical energy storage: a perspective view. Appl. Surf. Sci. 422, 492–497 (2017)Google Scholar
  2. 2.
    B. Dunn, H. Kamath, J.-M. Tarascon, Electrical energy storage for the grid: a battery of choices. Science 334, 928–935 (2011)Google Scholar
  3. 3.
    J. Liu, J. Wang, Z. Ku, H. Wang, S. Chen, L. Zhang, J. Lin, Z.X. Shen, Aqueous rechargeable alkaline CoxNi2−xS2/TiO2 Battery. ACS Nano 10, 1007–1016 (2016)Google Scholar
  4. 4.
    J. Liu, M. Chen, L. Zhang, J. Jiang, J. Yan, Y. Huang, J. Lin, H.J. Fan, Z.X. Shen, A flexible alkaline rechargeable Ni/Fe battery based on graphene foam/carbon nanotubes hybrid film. Nano Lett. 14, 7180–7187 (2014)Google Scholar
  5. 5.
    B.Y. Guan, L. Yu, X. Wang, S. Song, X.W. Lou, Formation of onion-like NiCo2S4 particles via sequential ion-exchange for hybrid supercapacitors. Adv. Mater. 29, 1605051 (2017)Google Scholar
  6. 6.
    Z.-B. Zhai, K.-J. Huang, X. Wu, Superior mixed Co–Cd selenide nanorods for high performance alkaline battery-supercapacitor hybrid energy storage. Nano Energy 47, 89–95 (2018)Google Scholar
  7. 7.
    R. Wang, X. Yan, J. Lang, Z. Zheng, P. Zhang, A hybrid supercapacitor based on flower-like Co(OH)2 and urchin-like VN electrode materials. J. Mater. Chem. A 2, 12724–12732 (2014)Google Scholar
  8. 8.
    S. Sun, T. Zhai, C. Liang, S.V. Savilov, H. Xia, Boosted crystalline/amorphous Fe2O3-delta core/shell heterostructure for flexible solid-state pseudocapacitors in large scale. Nano Energy 45, 390–397 (2018)Google Scholar
  9. 9.
    M. Yu, X. Cheng, Y. Zeng, Z. Wang, Y. Tong, X. Lu, S. Yang, Dual-doped molybdenum trioxide nanowires: a bifunctional anode for fiber-shaped asymmetric supercapacitors and microbial fuel cells. Angew. Chem. Int. Ed. 55, 6762–6766 (2016)Google Scholar
  10. 10.
    Z. Zhao, S. Hao, P. Hao, Y. Sang, A. Manivannan, N. Wu, H. Liu, Lignosulphonate-cellulose derived porous activated carbon for supercapacitor electrode. J. Mater. Chem. A 3, 15049–15056 (2015)Google Scholar
  11. 11.
    T. Brousse, D. Belanger, J.W. Long, To be or not to be pseudocapacitive? J. Electrochem. Soc. 162, A5185–A5189 (2015)Google Scholar
  12. 12.
    Y. Gogotsi, What nano can do for energy storage. ACS Nano 8, 5369–5371 (2014)Google Scholar
  13. 13.
    B. Zhao, L. Zhang, Q. Zhang, D. Chen, Y. Cheng, X. Deng, Y. Chen, R. Murphy, X. Xiong, B. Song, C.-P. Wong, M.-S. Wang, M. Liu, Rational design of nickel hydroxide-based nanocrystals on graphene for ultrafast energy storage. Adv. Energy Mater. 8, 1702247 (2018)Google Scholar
  14. 14.
    S. Dai, B. Zhao, C. Qu, D. Chen, D. Dang, B. Song, B.M. Deglee, J. Fu, C. Hu, C.-P. Wong, M. Liu, Controlled synthesis of three-phase NixSy/rGO nanoflake electrodes for hybrid supercapacitors with high energy and power density. Nano Energy 33, 522–531 (2017)Google Scholar
  15. 15.
    W. Tian, X. Wang, C. Zhi, T. Zhai, D. Liu, C. Zhang, D. Golberg, Y. Bando, Ni(OH)2 nanosheet @ Fe2O3 nanowire hybrid composite arrays for high-performance supercapacitor electrodes. Nano Energy 2, 754–763 (2013)Google Scholar
  16. 16.
    L. Huang, D. Chen, Y. Ding, Z.L. Wang, Z. Zeng, M. Liu, Hybrid composite Ni(OH)2@NiCo2O4 grown on carbon fiber paper for high-performance supercapacitors. ACS Appl. Mater. Interfaces 5, 11159–11162 (2013)Google Scholar
  17. 17.
    C. Feng, J. Zhang, Y. He, C. Zhong, W. Hu, L. Liu, Y. Deng, Sub-3 nm Co3O4 nanofilms with enhanced supercapacitor properties. ACS Nano 9, 1730–1739 (2015)Google Scholar
  18. 18.
    L.-L. Zhang, H.-H. Li, C.-Y. Fan, K. Wang, X.-L. Wu, H.-Z. Sun, J.-P. Zhang, A vertical and cross-linked Ni(OH)2 network on cellulose-fiber covered with graphene as a binder-free electrode for advanced asymmetric supercapacitors. J. Mater. Chem. A 3, 19077–19084 (2015)Google Scholar
  19. 19.
    J. Mei, W. Fu, Z. Zhang, X. Jiang, H. Bu, C. Jiang, E. Xie, W. Han, Vertically-aligned Co3O4 nanowires interconnected with Co(OH)2 nanosheets as supercapacitor electrode. Energy 139, 1153–1158 (2017)Google Scholar
  20. 20.
    Q. Wu, M. Wen, S. Chen, Q. Wu, Lamellar-crossing-structured Ni(OH)2/CNTs/Ni(OH)2 nanocomposite for electrochemical supercapacitor materials. J. Alloys Compd. 646, 990–997 (2015)Google Scholar
  21. 21.
    M. Huang, F. Li, F. Dong, Y.X. Zhang, L.L. Zhang, MnO2-based nanostructures for high-performance supercapacitors. J. Mater. Chem. A 3, 21380–21423 (2015)Google Scholar
  22. 22.
    Q. Zhang, B. Zhao, J. Wang, C. Qu, H. Sun, K. Zhang, M. Liu, High-performance hybrid supercapacitors based on self-supported 3D ultrathin porous quaternary Zn–Ni–Al–Co oxide nanosheets. Nano Energy 28, 475–485 (2016)Google Scholar
  23. 23.
    X. Wang, J. Hu, W. Liu, G. Wang, J. An, J. Lian, Ni–Zn binary system hydroxide, oxide and sulfide materials: synthesis and high supercapacitor performance. J. Mater. Chem. A 3, 23333–23344 (2015)Google Scholar
  24. 24.
    D.J. Milliron, S.M. Hughes, Y. Cui, L. Manna, J.B. Li, L.W. Wang, A.P. Alivisatos, Colloidal nanocrystal heterostructures with linear and branched topology. Nature 430, 190–195 (2004)Google Scholar
  25. 25.
    M. Lin, G.-H. Kim, J.-H. Kim, J.-W. Oh, J.-M. Nam, Transformative heterointerface evolution and plasmonic tuning of anisotropic trimetallic nanoparticles. J. Am. Chem. Soc. 139, 10180–10183 (2017)Google Scholar
  26. 26.
    W. Ren, D. Liu, C. Sun, X. Yao, J. Tan, C. Wang, K. Zhao, X. Wang, Q. Li, L. Mai, Nonhierarchical heterostructured Fe2O3/Mn2O3 porous hollow spheres for enhanced lithium storage. Small 14, e1800659–e1800659 (2018)Google Scholar
  27. 27.
    B. Zhao, D. Chen, X. Xiong, B. Song, R. Hu, Q. Zhang, B.H. Rainwater, G.H. Waller, D. Zhen, Y. Ding, Y. Chen, C. Qu, D. Dang, C.-P. Wong, M. Liu, A high-energy, long cycle-life hybrid supercapacitor based on graphene composite electrodes. Energy Storage Mater. 7, 32–39 (2017)Google Scholar
  28. 28.
    H. Kim, M.-Y. Cho, M.-H. Kim, K.-Y. Park, H. Gwon, Y. Lee, K.C. Roh, K. Kang, A novel high-energy hybrid supercapacitor with an snatase TiO2-reduced graphene oxide anode and an activated carbon cathode. Adv. Energy Mater. 3, 1500–1506 (2013)Google Scholar
  29. 29.
    R. Chen, I.K. Puri, I. Zhitomirsky, High areal capacitance of FeOOH-carbon nanotube negative electrodes for asymmetric supercapacitors. Ceram. Int. 44, 18007–18015 (2018)Google Scholar
  30. 30.
    X. Liang, G. Long, C. Fu, M. Pang, Y. Xi, J. Li, W. Han, G. Wei, Y. Ji, High performance all-solid-state flexible supercapacitor for wearable storage device application. Chem. Eng. J. 345, 186–195 (2018)Google Scholar
  31. 31.
    Y.-B. He, G.-R. Li, Z.-L. Wang, C.-Y. Su, Y.-X. Tong, Single-crystal ZnO nanorod/amorphous and nanoporous metal oxide shell composites: controllable electrochemical synthesis and enhanced supercapacitor performances. Energy Environ. Sci. 4, 1288–1292 (2011)Google Scholar
  32. 32.
    K. Wu, D. Liu, Y. Tang, In-situ single-step chemical synthesis of graphene-decorated CoFe2O4 composite with enhanced Li ion storage behaviors. Electrochim. Acta 263, 515–523 (2018)Google Scholar
  33. 33.
    H. Chen, S. Zhou, M. Chen, L. Wu, Reduced graphene Oxide-MnO2 hollow sphere hybrid nanostructures as high-performance electrochemical capacitors. J. Mater. Chem. 22, 25207–25216 (2012)Google Scholar
  34. 34.
    W.-H. Jin, G.-T. Cao, J.-Y. Sun, Hybrid supercapacitor based on MnO2 and columned FeOOH using Li2SO4 electrolyte solution. J. Power Sources 175, 686–691 (2008)Google Scholar
  35. 35.
    L. Ye, L. Zhao, H. Zhang, B. Zhang, H. Wang, One-pot formation of ultra-thin Ni/Co hydroxides with a sheet-like structure for enhanced asymmetric supercapacitors. J. Mater. Chem. A 4, 9160–9168 (2016)Google Scholar
  36. 36.
    C. Guan, J. Liu, C. Cheng, H. Li, X. Li, W. Zhou, H. Zhang, H.J. Fan, Hybrid structure of cobalt monoxide nanowire @ nickel hydroxidenitrate nanoflake aligned on nickel foam for high-rate supercapacitor. Energy Environ. Sci. 4, 4496–4499 (2011)Google Scholar
  37. 37.
    X. Sun, X. Qiu, L. Li, G. Li, ZnO twin-cones: synthesis, photoluminescence, and catalytic decomposition of ammonium perchlorate. Inorg. Chem. 47, 4146–4152 (2008)Google Scholar
  38. 38.
    H. Chen, L. Hu, Y. Yan, R. Che, M. Chen, L. Wu, One-step fabrication of ultrathin porous nickel hydroxide-manganese dioxide hybrid nanosheets for supercapacitor electrodes with excellent capacitive performance. Adv. Energy Mater. 3, 1636–1646 (2013)Google Scholar
  39. 39.
    L. Ye, Y. Zhou, Z. Bao, Y. Zhao, Y. Zou, L. Zhao, Q. Jiang, Sheet-membrane Mn-doped nickel hydroxide encapsulated via heterogeneous Ni3S2 nanoparticles for efficient alkaline battery-supercapacitor hybrid devices. J. Mater. Chem. A 6, 19020–19029 (2018)Google Scholar
  40. 40.
    P.V. Kamath, G.H.A. Therese, J. Gopalakrishnan, On the existence of hydrotalcite-like phases in the absence of trivalent cations. J. Solid State Chem. 128, 38–41 (1997)Google Scholar
  41. 41.
    M. Wehrens-Dijksma, P.H.L. Notten, Electrochemical quartz microbalance characterization of Ni(OH)2-based thin film electrodes. Electrochim. Acta 51, 3609–3621 (2006)Google Scholar
  42. 42.
    W. Li, S. Wang, L. Xin, M. Wu, X. Lou, Single-crystal beta-NiS nanorod arrays with a hollow-structured Ni3S2 framework for supercapacitor applications. J. Mater. Chem. A 4, 7700–7709 (2016)Google Scholar
  43. 43.
    Z. Cheng, H. Abernathy, M. Liu, Raman spectroscopy of nickel sulfide Ni3S2. J. Phys. Chem. C 111, 17997–18000 (2007)Google Scholar
  44. 44.
    J.-H. Zhong, A.-L. Wang, G.-R. Li, J.-W. Wang, Y.-N. Ou, Y.-X. Tong, Co3O4/Ni(OH)2 composite mesoporous nanosheet networks as a promising electrode for supercapacitor applications. J. Mater. Chem. 22, 5656–5665 (2012)Google Scholar
  45. 45.
    X. Xiong, D. Ding, D. Chen, G. Waller, Y. Bu, Z. Wang, M. Liu, Three-dimensional ultrathin Ni(OH)2 nanosheets grown on nickel foam for high-performance supercapacitors. Nano Energy 11, 154–161 (2015)Google Scholar
  46. 46.
    X. Wang, J. Hu, Y. Su, J. Hao, F. Liu, S. Han, J. An, J. Lian, Ni foam-Ni3S2@Ni(OH)2-graphene sandwich structure electrode materials: facile synthesis and high supercapacitor performance. Chem.-Eur. J. 23, 4128–4136 (2017)Google Scholar
  47. 47.
    J. Li, W. Zhao, F. Huang, A. Manivannan, N. Wu, Single-crystalline Ni(OH)2 and NiO nanoplatelet arrays as supercapacitor electrodes. Nanoscale 3, 5103–5109 (2011)Google Scholar
  48. 48.
    J. Yan, Z. Fan, W. Sun, G. Ning, T. Wei, Q. Zhang, R. Zhang, L. Zhi, F. Wei, Advanced asymmetric supercapacitors based on Ni(OH)2/graphene and porous graphene electrodes with high energy density. Adv. Funct. Mater. 22, 2632–2641 (2012)Google Scholar
  49. 49.
    C. Hou, X.-Y. Lang, Z. Wen, Y.-F. Zhu, M. Zhao, J.-C. Li, W.-T. Zheng, J.-S. Lian, Q. Jiang, Single-crystalline Ni(OH)2 nanosheets vertically aligned on a three-dimensional nanoporous metal for high-performance asymmetric supercapacitors. J. Mater. Chem. A 3, 23412–23419 (2015)Google Scholar
  50. 50.
    T.-W. Lin, C.-S. Dai, K.-C. Hung, High energy density asymmetric supercapacitor based on NiOOH/Ni3S2/3D graphene and Fe3O4/graphene composite electrodes. Sci. Rep. 4, 7274 (2014)Google Scholar
  51. 51.
    P. Yang, Y. Ding, Z. Lin, Z. Chen, Y. Li, P. Qiang, M. Ebrahimi, W. Mai, C.P. Wong, Z.L. Wang, Low-cost high-performance solid-state asymmetric supercapacitors based on MnO2 nanowires and Fe2O3 nanotubes. Nano Lett. 14, 731–736 (2014)Google Scholar
  52. 52.
    M.C. Biesinger, B.P. Payne, A.P. Grosvenor, L.W.M. Lau, A.R. Gerson, R.S.C. Smart, Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Cr, Mn, Fe, Co and Ni. Appl. Surf. Sci. 257, 2717–2730 (2011)Google Scholar
  53. 53.
    J. Lin, Y. Yan, X. Zheng, Z. Zhong, Y. Wang, J. Qi, J. Cao, W. Fei, Y. Huang, J. Feng, Designing and constructing core-shell NiCo2S4@Ni3S2 on Ni foam by facile one-step strategy as advanced battery-type electrodes for supercapattery. J. Colloid Interface Sci. 536, 456–462 (2019)Google Scholar
  54. 54.
    T. Li, Y. Zuo, X. Lei, N. Li, J. Liu, H. Han, Regulating the oxidation degree of nickel foam: a smart strategy to controllably synthesize active Ni3S2 nanorod/nanowire arrays for high-performance supercapacitors. J. Mater. Chem. A 4(21), 8029–8040 (2016)Google Scholar
  55. 55.
    J. Yang, D. Gong, G. Li, G. Zeng, Q. Wang, Y. Zhang, G. Liu, P. Wu, E. Vovk, Z. Peng, X. Zhou, Y. Yang, Z. Liu, Y. Sun, Self-assembly of thiourea-crosslinked graphene oxide framework membranes toward separation of small molecules. Adv. Mater. 30, 1705775 (2018)Google Scholar
  56. 56.
    X. Li, J. Shen, N. Li, M. Ye, Fabrication of gamma-MnS/rGO composite by facile one-pot solvothermal approach for supercapacitor applications. J. Power Sources 282, 194–201 (2015)Google Scholar
  57. 57.
    K. Wu, K. Du, G. Hu, A novel design concept for fabricating 3D graphene with the assistant of anti-solvent precipitated sulphates and its Li-ion storage properties. J. Mater. Chem. A 6, 3444–3453 (2018)Google Scholar
  58. 58.
    J. Ji, L.L. Zhang, H. Ji, Y. Li, X. Zhao, X. Bai, X. Fan, F. Zhang, R.S. Ruoff, Nanoporous Ni(OH)2 thin film on 3D ultrathin-graphite foam for asymmetric supercapacitor. ACS Nano 7, 6237–6243 (2013)Google Scholar
  59. 59.
    K.P. Vishnu, M.F. Ahmed, Cyclic voltammetric studies of nickel hydroxide and cobalt hydroxide thin films in alkali and alkaline earth metal hydroxides. J. Appl. Electrochem. 23, 225–230 (1993)Google Scholar
  60. 60.
    D. Zhou, X. Xiong, Z. Cai, N. Han, Y. Jia, Q. Xie, X. Duan, T. Xie, X. Zheng, X. Sun, D. Xue, Flame-engraved nickel-iron layered double hydroxide nanosheets for boosting oxygen evolution reactivity. Small Methods 2, 1800083 (2018)Google Scholar
  61. 61.
    Q. Hu, X. Liu, B. Zhu, L. Fan, X. Chai, Q. Zhang, J. Liu, C. He, L. Zhiqun, Crafting MoC2-doped bimetallic alloy nanoparticles encapsulated within N-doped graphene as roust bifunctional electrocatalysts for overall water splitting. Nano Energy 50, 212–219 (2018)Google Scholar
  62. 62.
    X. Leng, L. Wu, Y. Liu, C. Li, S. Wei, Z. Jiang, G. Wang, J. Lian, Q. Jiang, A novel open architecture built by ultra-fine single-crystal Co2(CO3)(OH)2 nanowires and reduced graphene oxide for asymmetric supercapacitors. J. Mater. Chem. A 4, 17171–17179 (2016)Google Scholar
  63. 63.
    B. Zhao, X. Deng, R. Ran, M. Liu, Z. Shao, Facile synthesis of a 3D nanoarchitectured Li4Ti5O12 electrode for ultrafast energy storage. Adv. Energy Mater. 6, 1500924 (2016)Google Scholar
  64. 64.
    D. Chen, X. Xiong, B. Zhao, M.A. Mahmoud, M.A. El-Sayed, M. Liu, Probing structural evolution and charge storage mechanism of NiO2Hx electrode materials using in operando resonance raman spectroscopy. Adv. Sci. 3, 1500433 (2016)Google Scholar
  65. 65.
    X. Xu, J. Liu, Z. Liu, J. Shen, R. Hu, J.-W. Liu, L. Ouyang, L. Zhang, M. Zhu, Robust pitaya-structured pyrite as high energy density cathode for high-rate lithium batteries. ACS Nano 11, 9033–9040 (2017)Google Scholar
  66. 66.
    L. Yang, X. Li, S. He, G. Du, X. Yu, J. Liu, Q. Gao, R. Hu, M. Zhu, Mesoporous Mo2C/N-doped carbon heteronanowires as high-rate and long-life anode materials for Li-ion batteries. J. Mater. Chem. A 4, 10842–10849 (2016)Google Scholar
  67. 67.
    Q. Wei, Q. Wang, Q. Li, Q. An, Y. Zhao, Z. Peng, Y. Jiang, S. Tan, M. Yan, L. Mai, Pseudocapacitive layered iron vanadate nanosheets cathode for ultrahigh-rate lithium ion storage. Nano Energy 47, 294–300 (2018)Google Scholar
  68. 68.
    N. Tuyen, M.F. Montemor, gamma-FeOOH and amorphous Ni–Mn hydroxide on carbon nanofoam paper electrodes for hybrid supercapacitors. J. Mater. Chem. A 6, 2612–2624 (2018)Google Scholar
  69. 69.
    J. Chang, M. Jin, F. Yao, T.H. Kim, L. Viet Thong, H. Yue, F. Gunes, B. Li, A. Ghosh, S. Xie, Y.H. Lee, Asymmetric supercapacitors based on graphene/MnO2 nanospheres and graphene/MoO3 nanosheets with high energy density. Adv. Funct. Mater. 23, 5074–5083 (2013)Google Scholar
  70. 70.
    H. Huo, Y. Zhao, C. Xu, 3D Ni3S2 nanosheet arrays supported on Ni foam for high-performance supercapacitor and non-enzymatic glucose detection. J. Mater. Chem. A 2, 15111–15117 (2014)Google Scholar
  71. 71.
    H.B. Li, M.H. Yu, F.X. Wang, P. Liu, Y. Liang, J. Xiao, C.X. Wang, Y.X. Tong, G.W. Yang, Amorphous nickel hydroxide nanospheres with ultrahigh capacitance and energy density as electrochemical pseudocapacitor materials. Nat. Commun. 4, 1894 (2013)Google Scholar
  72. 72.
    X. Han, K. Tao, D. Wang, L. Han, Design of a porous cobalt sulfide nanosheet array on Ni foam from zeolitic imidazolate frameworks as an advanced electrode for supercapacitors. Nanoscale 10, 2735–2741 (2018)Google Scholar
  73. 73.
    X. Wang, R. Ding, X. Ren, L. Shi, Q. Li, Y. Yang, H. Wang, M. Wang, L. Wang, B. Lv, Micron iron oxide particles with thickness-controllable carbon coating for Ni–Fe battery. Electrochim. Acta 299, 800–808 (2019)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Key Laboratory of Automobile Materials, Ministry of Education and School of Materials Science and EngineeringJilin UniversityChangchunPeople’s Republic of China

Personalised recommendations