The effect of planar atomic configuration in the enhancement of AC conductivity and dielectric characterization of bisbenzimidazo[2,1-a:2′,1′-a′]anthra[2,1,9-def:6,5,10-d′e′f′]diisoquinoline-10,21-dione7 (BI-diisoQ) thin film

  • Saleem I. Qashou
  • A. A. A. DarwishEmail author


The analysis of FTIR-spectra verified the adequacy of vacuum thermal evaporating technique in achieving undissociated films of bisbenzimidazo [2,1-a:2′,1′-a′] anthrax [2,1,9-def:6,5,10-d′e′f′] diisoquinoline-10,21-dione7 (BI-diisoQ). The SEM images confirmed that the surface topography of BI-diisoQ thin film is realized by nano-rod shape. The electrical conductivity [σ(ω)] pattern versus temperature and frequency was studied in the frequency and temperature ranges of 250 Hz–5 MHz and 290 to 373 K respectively. The behavior of σ(ω) in the scope of higher frequency range was explained by Jonscher formalism. The transition of carrier charge inside BI-diisoQ thin film was dominated by the correlated barrier hopping (CBH) model. The density of localized states [N(EF)] at the Fermi states was estimated to be 3.4 × 1022 eV−1 cm−3 at T = 293 K and ω = 500 kHz. The behavior of the complex dielectric constants versus frequencies and temperatures has been studied. The relationship between the imaginary part of electric complex modulus and frequency at different values of temperature was discussed. The activation energy of relaxation time (ΔEM) was evaluated to be 0.156 eV. Overall, the comparison of the low value of ΔEM and the significant value of N(EF) for BI-diisoQ molecule concerning the relatively small organic molecules confirm the effective of planar atomic configuration in boosting the dipole orientation and in the enhancement of the induced motion of the carrier charges.



  1. 1.
    M.M. El-Nahass, A.A. Atta, E.F.M. El-Zaidia, A.A.M. Farag, A.H. Ammar, Electrical conductivity and dielectric measurements of CoMTPP. Mater. Chem. Phys. 143, 490–494 (2014)CrossRefGoogle Scholar
  2. 2.
    M.M. El-Nahass, H.S. Metwally, H.E.A. El-Sayed, A.M. Hassanien, Electrical conductivity and dielectric relaxation of bulk iron (III) chloride tetraphenyl porphyrin. Mater. Chem. Phys. 133, 649–654 (2012)CrossRefGoogle Scholar
  3. 3.
    Saleem I. Qashou, A.A.A. Darwish, S.E. Al Garni, Enhancement of microstructure and electrical conductivity of N, N′-dimethyl-3,4,9,10-perylenedicarboximide nanostructured films by thermal annealing for photoelectronic applications. Synth. Met. 242, 67–72 (2018)CrossRefGoogle Scholar
  4. 4.
    A.A.A. Darwish, Saleem I. Qashou, Z. Khattari, M.M. Hawamdeh, A. Aldrabee, S.E. Al Garni, Effect of gamma radiation-induced on structural, electrical, and optical properties of N, N′-Dimethyl-3,4,9,10 perylenedicarboximide nanostructure films. J. Electron. Mater. 47(12), 7196–7203 (2018)CrossRefGoogle Scholar
  5. 5.
    I.G. Hill, D. Milliron, J. Schwartz, A. Kahn, Organic semiconductor interfaces: electronic structure and transport properties. Appl. Surf. Sci. 166, 354–362 (2000)CrossRefGoogle Scholar
  6. 6.
    A.A.A. Darwish, E.F.M. El-Zaidia, Saleem I. Qashou, Investigation of structural and electrical properties of 2,9-Bis [2-(4-2chlorophenyl)ethyl] anthrax [2,1,9-def:6,5,10-d′e′f′] diisoquinoline-1,3,8,10 (2H,9H) tetrone (Ch-diisoQ) nanostructured films for photoelectronic applications. Physica B 558, 116–121 (2019)CrossRefGoogle Scholar
  7. 7.
    M. Rashad, A.Z. Mahmoud, Saleem I. Qashou, Nanorod films of bisbenzimidazo [2,1- a:2′,1′-a′] anthrax [2,1,9-def:6,5,10- d′e′f′] diisoquinoline-10,21-dione7 (BIdiisoQ) for highly optoelectronic devices. J. Mater. Sci. 29(14), 12067–12075 (2018)Google Scholar
  8. 8.
    Saleem I. Qashou, S.E. Al Garni, A.A.A. Darwish, M.M. Hawamdeh, A. Aldrabee, Gamma radiation effect on physical properties of 2,9-Bis [2-(4-chlorophenyl)ethyl] anthrax [2,1,9-def:6,5,10-d′e′f′] diisoquinoline-1,3,8,10 (2H,9H) tetrone films. Optik 170, 540–547 (2018)CrossRefGoogle Scholar
  9. 9.
    G. Bringmann, Y. Reichert, V. Kane, The total synthesis of streptonigrin and related antitumor antibiotic natural products. Tetrahedron 60, 3539–3574 (2004)CrossRefGoogle Scholar
  10. 10.
    C.J. Frederickson, E.J. Kasarskis, D. Ringo, R.E. Frederickson, A quinoline fluorescence method for visualizing and assaying the histochemically reactive zinc (bouton zinc) in the brain. J. Neurosci. Methods 20, 91–103 (1987)CrossRefGoogle Scholar
  11. 11.
    H.M. Zeyada, F.M. El-Taweel, M.M. El-Nahass, M.M. El-Shabaan, Effect of substitution group on dielectric properties of 4H-pyrano [3, 2-c] quinoline derivatives thin films. Chin. Phys. B 25, 077701 (2016)CrossRefGoogle Scholar
  12. 12.
    V.V. Menon, E. Fazal, Y.S. Mary, C.Y. Panicker, S. Armakovi, S.J. Armakovi, S. Nagarajan, C. Van Alsenoy, FT-IR, FT-Raman and NMR characterization of 2-isopropyl-5-methylcyclohexyl quinoline-2-carboxylate and investigation of its reactive and optoelectronic properties by molecular dynamical simulations and DFT calculations. J. Mol. Struct. 1127, 124–137 (2017)CrossRefGoogle Scholar
  13. 13.
    Saleem I. Qashou, A.A.A. Darwish, S.R. Alharbi, S.E. Al Garni, T.A. Hanafy, Dielectric relaxation process and AC conductivity of 2,9- Bis [2-(4-chlorophenyl)ethyl] anthrax [2,1,9-def:6,5,10-d′e′f′] diisoquinoline-1,3,8,10 (2H,9H) tetron (Ch-diisoQ) thin films. J. Mater. Sci. 28(19), 14252–14257 (2017)Google Scholar
  14. 14.
    H.M. Zeyada, N.A. El-Ghamaz, E.A. Gaml, Effect of substitution group variation on the optical functions of -5-sulfono-7-(4-x phenyl azo)-8-hydroxy quinoline thin films. Curr. App. Phys. 13, 1960–1966 (2013)CrossRefGoogle Scholar
  15. 15.
    M.M. El-Nahass, E.F.M. El-Zaidia, A.A.A. Darwish, G.F. Salem, Dielectric Relaxation Behavior and AC Electrical Conductivity Study of 2-(1,2-Dihydro-7-Methyl-2-Oxoquinoline-5-yl) Malononitrile (DMOQMN). J. Electron. Mater. 46, 1093–1099 (2017)CrossRefGoogle Scholar
  16. 16.
    B.P. Rand, D. Cheyns, K. Vasseur, N.C. Giebink, S. Mothy, Y. Yi, V. Coropceanu, D. Beljonne, J. Cornil, J.-L. Brédas, J. Genoe, The Impact of Molecular Orientation on the Photovoltaic Properties of a Phthalocyanine/Fullerene Heterojunction. Adv. Func. Mater. 22, 2987–2995 (2012)CrossRefGoogle Scholar
  17. 17.
    L. Zang, Y. Che, J.S. Moore, One-Dimensional Self-Assembly of Planar π- Conjugated Molecules: adaptable Building Blocks for Organic Nanodevices. Acc. Chem. Res. 41, 1596–1608 (2008)CrossRefGoogle Scholar
  18. 18.
    J. Hu, T.W. Odom, C.M. Lieber, Chemistry and physics in one dimension: Synthesis and properties of nanowires and nanotubes. Acc. Chem. Res. 32(5), 435–445 (1999)CrossRefGoogle Scholar
  19. 19.
    Saleem I. Qashou, M. Rashad, A.Z. Mahmoud, A.A.A. Darwish, The promotion of Indeno [1, 2-b] flourene-6, 12 dione thin film to be changed into stable aromatic compound under the effect of annealing treatment. Vacuum 162, 199–207 (2019)CrossRefGoogle Scholar
  20. 20.
    Saleem I. Qashou, A.A.A. Darwish, M. Rashad, Z. Khattari, AC electrical conductivity and dielectric relaxation studies in n-type organic thin films of N, N′-Dimethyl-3,4,9,10-perylenedicarboximide (DMPDC). Phys. B 525, 159–163 (2017)CrossRefGoogle Scholar
  21. 21.
    E.M. El-Menyawy, H.M. Zeyad, M.M. El-Nahass, AC conductivity and dielectric properties of 2-(2,3-dihydro-1,5-dimethyl-3-oxo-2- phenyl-1H-pyrazol-4-ylimino)-2-(4-nitrophenyl)acetonitrile thin films. Solid State Sci. 12, 2182–2187 (2010)CrossRefGoogle Scholar
  22. 22.
    M.M. El-Nahass, A.A.M. Farag, F.S.H. Abu-Samaha, E. Elesh, Temperature and frequency dependencies of AC and dielectric characterizations of copper tetraphenyl porphyrin thin films. Vacuum 99, 153–159 (2014)CrossRefGoogle Scholar
  23. 23.
    I.M. Soliman, M.M. El-Nahass, Y. Mansour, Electrical, dielectric and electrochemical measurements of bulk aluminum phthalocyanine chloride (AlPcCl). Solid State Commun. 225, 17–21 (2016)CrossRefGoogle Scholar
  24. 24.
    M.M. El-Nahass, A.A. Atta, M.A. Kamel, S.Y. Huthaily, AC conductivity, and dielectric characterization of synthesized p-N, N dimethylamino benzylidenemalononitrile (DBM) organic dye. Vacuum 91, 14–19 (2013)CrossRefGoogle Scholar
  25. 25.
    G.E. Pike, ac conductivity of scandium oxide and a new hopping model for conductivity. Phys. Rev. B 6, 1572 (1972)CrossRefGoogle Scholar
  26. 26.
    S.R. Elliott, A theory of ac conduction in chalcogenide glasses. Philos. Mag. 36, 1291–1304 (1977)CrossRefGoogle Scholar
  27. 27.
    J. Rivnay, L.H. Jimison, J.E. Northrup, M.F. Toney, R. Noriega, Sh Lu, T.J. Marks, A. Facchetti, A. Salleo, Large modulation of carrier transport by grain-boundary molecular packing and microstructure in organic thin films. Nat. Mater. 8, 952–958 (2009)CrossRefGoogle Scholar
  28. 28.
    A.A. Attia, H.S. Soliman, M.M. Saadeldin, K. Sawaby, AC electrical conductivity and dielectric studies of bulk p-quaterphenyl. Synth. Met. 205, 139–144 (2015)CrossRefGoogle Scholar
  29. 29.
    Y. Noguchi, Y. Miyazaki, Y. Tanaka, N. Sato, Y. Nakayama, T.D. Schmidt, W. Brütting, H. Ishii, Charge accumulation at organic semiconductor interfaces due to a permanent dipole moment and its orientational order in bilayer devices. J. Appl. Phys. 111, 114508 (2012)CrossRefGoogle Scholar
  30. 30.
    B. Carsten, J.M. Szarko, H.J. Son, W. Wang, L. Lu, F. He, B.S. Rolczynski, S.J. Lou, L.X. Chen, L. Yu, Examining the effect of the dipole moment on charge separation in donor-acceptor polymers for organic photovoltaic applications. J. Am. Chem. Soc. 133, 20468–20475 (2011)CrossRefGoogle Scholar
  31. 31.
    T.A. Abdel-Baset, A. Hassen, Dielectric relaxation analysis and Ac conductivity of polyvinyl alcohol/polyacrylonitrile film. Phys. B 499, 24–28 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Physics, Faculty of ScienceZarqa UniversityZarqaJordan
  2. 2.Nanotechnology Research Laboratory, Department of Physics, Faculty of ScienceUniversity of TabukTabukSaudi Arabia
  3. 3.Department of Physics, Faculty of Education at Al-MahweetSana’a UniversityAl-MahweetYemen

Personalised recommendations