Advertisement

Reduced graphene oxide modified titania photoanodes for fabrication of the efficient dye-sensitized solar cell

  • R. RamamoorthyEmail author
  • V. Eswaramoorthi
  • M. Sundararajan
  • M. Boobalan
  • A. D. Sivagami
  • R. Victor Williams
Article
  • 13 Downloads

Abstract

In the present investigation, a novel photoanode material TiO2-reduced graphene oxide (rGO) nanocomposite has been prepared and coated by doctor blade technique for the fabrication of dye-sensitized solar cells. The reduction of graphene oxide to reduced graphene oxide and the crystallization of the material has been achieved by one step thermal annealing of photoanodes at 400 °C. The UV–Visible absorption and photoluminescence studies were confirming the following attributes that, the reduction in band gap energy and the existence of longer lifetime of charge carriers in TiO2-rGO nanocomposite photoanodes respectively. Fourier transform infra-red characterization was confirming the bonding between TiO2 and rGO. The X-ray diffraction pattern fortified the formation of anatase titania with reduced crystallite size due to the presence of graphene. The scanning electron microscopy images of TiO2-rGO nanocomposite photoanodes revealed the presence of spherical nanoparticles and agglomeration of graphene sheets in TiO2 matrix. In addition, Raman and transmission electron microscopy analysis ensured the interaction between TiO2 and graphene. The solar cell with TiO2-rGO nanocomposite photoanode has 6.61% efficiency which was 30% higher than that of the pristine TiO2 nanoparticles based device. The electrochemical impedance spectroscopy analysis proposed the reduction in charge transfer resistance which was achieved in the newly developed photoanode employed devices.

Notes

References

  1. 1.
    B. O’Regan, M. Gratzel, Nature 353, 737 (1991)CrossRefGoogle Scholar
  2. 2.
    J.-J. Wu, G.-R. Chen, C. Lu, W. Wu, J. Chen, Nanotechnology 19, 105702 (2008)CrossRefGoogle Scholar
  3. 3.
    S. Mathew, A. Yella, P. Gao, R. Humphry-Baker, B.F.E. Curchod, N. Ashari-Astani, I. Tavernelli, U. Rothlisberger, M.K. Nazeeruddin, M. Grätzel, Nat. Chem. 6, 242 (2014)CrossRefGoogle Scholar
  4. 4.
    F.W. Low, C.W. Lai, Renew. Sustain. Energy Rev. 82, 103 (2018)CrossRefGoogle Scholar
  5. 5.
    V. Leandri, W. Yang, J.M. Gardner, G. Boschloo, S. Ott, ACS Appl. Energy Mater. 1, 202 (2018)CrossRefGoogle Scholar
  6. 6.
    K. Kakiage, Y. Aoyama, T. Yano, K. Oya, J. Fujisawa, M. Hanaya, Chem. Commun. 51, 15894 (2015)CrossRefGoogle Scholar
  7. 7.
    P.-T. Hsiao, Y.-J. Liou, H. Teng, J. Phys. Chem. C 115, 15018 (2011)CrossRefGoogle Scholar
  8. 8.
    F. Nunzi, L. Storchi, M. Manca, R. Giannuzzi, G. Gigli, F. De Angelis, ACS Appl. Mater. Interfaces 6, 2471 (2014)CrossRefGoogle Scholar
  9. 9.
    A.C. Ferrari, D.M. Basko, Nat. Nano 8, 235 (2013)CrossRefGoogle Scholar
  10. 10.
    A.H. CastroNeto, F. Guinea, N.M.R. Peres, K.S. Novoselov, A.K. Geim, Rev. Mod. Phys. 81, 109 (2009)CrossRefGoogle Scholar
  11. 11.
    H. Kim, J. Cho, S.-Y. Jang, Y.-W. Song, Appl. Phys. Lett. 98, 21104 (2011)CrossRefGoogle Scholar
  12. 12.
    A. Reina, X. Jia, J. Ho, D. Nezich, H. Son, V. Bulovic, M.S. Dresselhaus, J. Kong, Nano Lett. 9, 30 (2009)CrossRefGoogle Scholar
  13. 13.
    K. Krishnamoorthy, G.-S. Kim, S.J. Kim, Ultrason. Sonochem. 20, 644 (2013)CrossRefGoogle Scholar
  14. 14.
    S. Stankovich, D.A. Dikin, R.D. Piner, K.A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S.T. Nguyen, R.S. Ruoff, Carbon N. Y. 45, 1558 (2007)CrossRefGoogle Scholar
  15. 15.
    Z. Xiang, X. Zhou, G. Wan, G. Zhang, D. Cao, ACS Sustain. Chem. Eng. 2, 1234 (2014)CrossRefGoogle Scholar
  16. 16.
    N. Yang, J. Zhai, D. Wang, Y. Chen, L. Jiang, ACS Nano 4, 887 (2010)CrossRefGoogle Scholar
  17. 17.
    Y. Kusumawati, M.A. Martoprawiro, T. Pauporté, J. Phys. Chem. C 118, 9974 (2014)CrossRefGoogle Scholar
  18. 18.
    J. Durantini, P.P. Boix, M. Gervaldo, G.M. Morales, L. Otero, J. Bisquert, E.M. Barea, J. Electroanal. Chem. 683, 43 (2012)CrossRefGoogle Scholar
  19. 19.
    A. Anish Madhavan, S. Kalluri, D.K. Chacko, T.A. Arun, S. Nagarajan, K.R.V. Subramanian, A. Sreekumaran Nair, S.V. Nair, A. Balakrishnan, RSC Adv. 2, 13032 (2012)CrossRefGoogle Scholar
  20. 20.
    R. Liu, Y. Qiao, Y. Song, K. Song, C. Liu, Chem. Res. Chin. Univ. 34, 269 (2018)CrossRefGoogle Scholar
  21. 21.
    H. Wang, S.L. Leonard, Y.H. Hu, Ind. Eng. Chem. Res. 51, 10613 (2012)CrossRefGoogle Scholar
  22. 22.
    R. Raja, M. Govindaraj, M.D. Antony, K. Krishnan, E. Velusamy, A. Sambandam, M. Subbaiah, V.W. Rayar, J. Solid State Electrochem. 21, 891 (2017)CrossRefGoogle Scholar
  23. 23.
    J. Bisquert, Phys. Chem. Chem. Phys. 5, 5360 (2003)CrossRefGoogle Scholar
  24. 24.
    R. Ramamoorthy, N. Radha, G. Maheswari, S. Anandan, S. Manoharan, R. Victor Williams, J. Appl. Electrochem. 46, 929 (2016)CrossRefGoogle Scholar
  25. 25.
    C. Zhu, J. Zhai, D. Wen, S. Dong, J. Mater. Chem. 22, 6300 (2012)CrossRefGoogle Scholar
  26. 26.
    E. Casero, C. Alonso, L. Vázquez, M.D. Petit-Domínguez, A.M. Parra-Alfambra, M. de la Fuente, P. Merino, S. Álvarez-García, A. de Andrés, F. Pariente, E. Lorenzo, Electroanalysis 25, 154 (2013)CrossRefGoogle Scholar
  27. 27.
    Z.-S. Wu, W. Ren, L. Gao, B. Liu, C. Jiang, H.-M. Cheng, Carbon N. Y. 47, 493 (2009)CrossRefGoogle Scholar
  28. 28.
    S. Bose, T. Kuila, A.K. Mishra, N.H. Kim, J.H. Lee, J. Mater. Chem. 22, 9696 (2012)CrossRefGoogle Scholar
  29. 29.
    X. Kong, C. Liu, W. Dong, X. Zhang, C. Tao, L. Shen, J. Zhou, Y. Fei, S. Ruan, Appl. Phys. Lett. 94, 2007 (2009)Google Scholar
  30. 30.
    M.S.A. SherShah, A.R. Park, K. Zhang, J.H. Park, P.J. Yoo, ACS. Appl. Mater. Interfaces 4, 3893 (2012)CrossRefGoogle Scholar
  31. 31.
    G. Cheng, M.S. Akhtar, O.-B. Yang, F.J. Stadler, ACS Appl. Mater. Interfaces 5, 6635 (2013)CrossRefGoogle Scholar
  32. 32.
    J. Lim, P. Murugan, N. Lakshminarasimhan, J.Y. Kim, J.S. Lee, S.H. Lee, W. Choi, J. Catal. 310, 91 (2014)CrossRefGoogle Scholar
  33. 33.
    T. Aguilar, J. Navas, R. Alcántara, C. Fernández-Lorenzo, J.J. Gallardo, G. Blanco, J. Martín-Calleja, Chem. Phys. Lett. 571, 49 (2013)CrossRefGoogle Scholar
  34. 34.
    S. Li, Z. Ma, L. Wang, J. Liu, Sci. China Ser. B 51, 179 (2008)CrossRefGoogle Scholar
  35. 35.
    J. Dhanalakshmi, S. Iyyapushpam, S.T. Nishanthi, M. Malligavathy, D.P. Padiyan, Adv. Nat. Sci. Nanosci. Nanotechnol. 8, 15015 (2017)CrossRefGoogle Scholar
  36. 36.
    D. Liang, C. Cui, H. Hu, Y. Wang, S. Xu, B. Ying, P. Li, B. Lu, J. Alloys Compd. 582, 236 (2014)CrossRefGoogle Scholar
  37. 37.
    B.A. Bhanvase, T.P. Shende, S.H. Sonawane, Environ. Technol. Rev. 6, 1 (2017)CrossRefGoogle Scholar
  38. 38.
    J. Liu, H. Bai, Y. Wang, Z. Liu, X. Zhang, D.D. Sun, Adv. Funct. Mater. 20, 4175 (n.d.)Google Scholar
  39. 39.
    S. Rattana, N. Chaiyakun, N. Witit-anun, P. Nuntawong, S. Chindaudom, C. Oaew, P. Kedkeaw, Limsuwan. Proc. Eng. 32, 759 (2012)CrossRefGoogle Scholar
  40. 40.
    P.M. Kumar, S. Badrinarayanan, M. Sastry, Thin Solid Films 358, 122 (2000)CrossRefGoogle Scholar
  41. 41.
    J. Shen, B. Yan, M. Shi, H. Ma, N. Li, M. Ye, J. Mater. Chem. 21, 3415 (2011)CrossRefGoogle Scholar
  42. 42.
    B. Jiang, C. Tian, W. Zhou, J. Wang, Y. Xie, Q. Pan, Z. Ren, Y. Dong, D. Fu, J. Han, H. Fu, Chemistry 17, 8379 (2011)CrossRefGoogle Scholar
  43. 43.
    H.G. Yang, H.C. Zeng, J. Phys. Chem. B 108, 3492 (2004)CrossRefGoogle Scholar
  44. 44.
    R. Ramamoorthy, K. Karthika, A. Maggie Dayana, G. Maheswari, V. Eswaramoorthi, N. Pavithra, S. Anandan, R. Victor Williams, J. Mater. Sci. Mater. Electron. 28, 1 (2017)CrossRefGoogle Scholar
  45. 45.
    M. Yoshinaka, K. Hirota, O. Yamaguchi, J. Am. Ceram. Soc. 80, 2749 (1997)CrossRefGoogle Scholar
  46. 46.
    C. Chen, W. Cai, M. Long, B. Zhou, Y. Wu, D. Wu, Y. Feng, ACS Nano 4, 6425 (2010)CrossRefGoogle Scholar
  47. 47.
    U. Mehmood, K. Harrabi, I.A. Hussein, S. Ahmed, IEEE J. Photovoltaics 6, 196 (2016)CrossRefGoogle Scholar
  48. 48.
    M. Thommes, K. Kaneko, A.V. Neimark, J. Olivier, F. Rodriguez-Reinoso, J. Rouquerol, K. Sing, Pure Appl. Chem. 87, 1051–1059 (2015)CrossRefGoogle Scholar
  49. 49.
    V. Štengl, S. Bakardjieva, T.M. Grygar, J. Bludská, M. Kormunda, Chem. Cent. J. 7, 41 (2013)CrossRefGoogle Scholar
  50. 50.
    G. Di Carlo, G. Calogero, M. Brucale, D. Caschera, T. de Caro, G. Di Marco, G.M. Ingo, J. Alloys Compd. 609, 116 (2014)CrossRefGoogle Scholar
  51. 51.
    H. Cai, J. Li, X. Xu, H. Tang, J. Luo, K. Binnemans, J. Fransaer, D.E. De Vos, J. Alloys Compd. 697, 132 (2017)CrossRefGoogle Scholar
  52. 52.
    Z. Peining, A.S. Nair, P. Shengjie, Y. Shengyuan, S. Ramakrishna, Appl. Mater. Interfaces 4, 581 (2012)CrossRefGoogle Scholar
  53. 53.
    S.D. Perera, R.G. Mariano, K. Vu, N. Nour, O. Seitz, Y. Chabal, K.J. Balkus, ACS Catal. 2, 949 (2012)CrossRefGoogle Scholar
  54. 54.
    W. Yuan, B. Li, L. Li, Appl. Surf. Sci. 257, 10183 (2011)CrossRefGoogle Scholar
  55. 55.
    X. Pan, Y. Zhao, S. Liu, C.L. Korzeniewski, S. Wang, Z. Fan, ACS Appl. Mater. Interfaces 4, 3944 (2012)CrossRefGoogle Scholar
  56. 56.
    Y. Zhang, Z.R. Tang, X. Fu, Y.J. Xu, ACS Nano 5, 7426 (2011)CrossRefGoogle Scholar
  57. 57.
    N. Boonprakob, N. Wetchakun, S. Phanichphant, D. Waxler, P. Sherrell, A. Nattestad, J. Chen, B. Inceesungvorn, J. Colloid Interface Sci. 417, 402 (2014)CrossRefGoogle Scholar
  58. 58.
    S. Sun, L. Gao, Y. Liu, Appl. Phys. Lett. 96, 83113 (2010)CrossRefGoogle Scholar
  59. 59.
    S.-M. Chen, Int. J. Electrochem. Sci. 6, 4072–4085 (2011)Google Scholar
  60. 60.
    H. Wang, S.L. Leonard, Y.H. Hu, Ind. Eng. Chem. Res. 51, 10613 (2012)CrossRefGoogle Scholar
  61. 61.
    L. Chen, Y. Zhou, W. Tu, Z. Li, C. Bao, H. Dai, T. Yu, J. Liu, Z. Zou, Nanoscale 5, 3481 (2013)CrossRefGoogle Scholar
  62. 62.
    H.-S. Ko, H.-J. Han, G. Na, A.-R. Lee, J.-J. Yun, E.-M. Han, Mol. Cryst. Liq. Cryst. 579, 83 (2013)CrossRefGoogle Scholar
  63. 63.
    J. Liu, X. Fu, D. Cao, L. Mao, J. Wang, D. Mu, B. Mi, B. Zhao, Z. Gao, Org. Electron. 23, 158 (2015)CrossRefGoogle Scholar
  64. 64.
    S. Bykkam, K.V. Rao, R. Naresh Kumar, C. Shilpa Chakra, T. Dayakar, J. Mater. Sci. Mater. Electron. 27, 12574 (2016)CrossRefGoogle Scholar
  65. 65.
    F.W. Low, C.W. Lai, S.B. Abd Hamid, J. Mater. Sci. Mater. Electron. 28, 3819 (2017)CrossRefGoogle Scholar
  66. 66.
    Y.-C. Wang, C.-P. Cho, J. Photochem. Photobiol. A 332, 1 (2017)CrossRefGoogle Scholar
  67. 67.
    C. Kuo, J. Chou, Y. Liao, C. Lai, C. Ko, Z. Yang, and C. Wu, In 2018 IEEE International Conference on the Applied System Invention (2018), pp. 992–995Google Scholar
  68. 68.
    K.A. Kumar, K. Subalakshmi, J. Senthilselvan, Mater. Sci. Semicond. Process. 96, 104 (2019)CrossRefGoogle Scholar
  69. 69.
    L. Chen, Y. Zhou, W. Tu, Z. Li, C. Bao, H. Dai, T. Yu, J. Liu, Z. Zou, Nanoscale 5, 3481 (2013)CrossRefGoogle Scholar
  70. 70.
    C. Wang, Z. Yu, C. Bu, P. Liu, S. Bai, C. Liu, K.K. Kondamareddy, W. Sun, K. Zhan, K. Zhang, S. Guo, X. Zhao, J. Power Sources 282, 596 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • R. Ramamoorthy
    • 1
    Email author
  • V. Eswaramoorthi
    • 2
  • M. Sundararajan
    • 3
  • M. Boobalan
    • 4
  • A. D. Sivagami
    • 5
  • R. Victor Williams
    • 1
  1. 1.Department of PhysicsSt. Joseph’s CollegeTiruchirappalliIndia
  2. 2.Department of PhysicsKarpagam College of EngineeringCoimbatoreIndia
  3. 3.Department of PhysicsPaavendhar College of Arts & ScienceSalemIndia
  4. 4.Department of Chemistry, College of Natural and Computational SciencesHaramaya UniversityDire DawaEthiopia
  5. 5.School of Advanced SciencesVITTamilnaduIndia

Personalised recommendations