Advertisement

Fabrication of multilayered MoS2 coated raspberry-like TiO2 on rGO with enhanced photocatalytic reduction of Cr(VI)

  • Zhongtao Chen
  • Yuanyuan Liu
  • Weijie Zhang
  • Xinli GuoEmail author
  • Yanmei Zheng
  • Xuan Tang
  • Yixuan Wang
  • Yao Zhang
  • Zengmei Wang
  • Tong ZhangEmail author
Original Research
  • 15 Downloads

Abstract

A novel MoS2/TiO2/reduced graphene oxide (MoS2/TiO2/rGO) hybrid photocatalyst was prepared via a two-step hydrothermal process. Where this raspberry-like TiO2 microsphere (300–400 nm) was covered by network-like MoS2 multilayer on the rGO nanosheets. The resulting MoS2/TiO2/rGO hybrid is uniform, chemically stable which can remove 100% Cr(VI) from a 10 mg/L solution within the pH range of 2–5 under simulated sunlight irradiation. Furthermore, it demonstrates excellent reproducibility and stability with a removal rate of 66.7% after seven recycling of Cr(VI) photoreduction which shows a great potential for practical application. The highly efficient photocatalytic activities of this novel hybrid is believed to be ascribed to the enhanced light absorption and photogenerated charge carriers transfer rate of TiO2 due to the hybridization of network-like multilayer MoS2 and rGO nanosheets.

Notes

Acknowledgements

The authors would like to thank most under Grant Number 2017YFA0205800, National Natural Science Foundation of China 21773114, the Opening Project of Jiangsu Key Laboratory of Advanced Metallic Materials, China and the Project of Jiangsu Key Laboratory for Clad Materials, China (BM2014006).

References

  1. 1.
    S. Yin, Y. Wu, W. Xu, Y. Li, Z. Shen, C. Feng, Chemosphere 155, 564 (2016)CrossRefGoogle Scholar
  2. 2.
    A. Linos, A. Petralias, C.A. Christophi, E. Christoforidou, P. Kouroutou, M. Stoltidis, A. Veloudaki, E. Tzala, K.C. Makris, M.R. Karagas, Environ. Health 10, 50 (2011)CrossRefGoogle Scholar
  3. 3.
    A. Zhitkovich, Chem. Res. Toxicol. 24, 1617 (2011)CrossRefGoogle Scholar
  4. 4.
    E. Vaiopoulou, P. Gikas, Water Res. 46, 549 (2012)CrossRefGoogle Scholar
  5. 5.
    Y. Zhang, M. Xu, H. Li, H. Ge, Z. Bian, Appl. Catal. B Environ. 226, 213 (2018)CrossRefGoogle Scholar
  6. 6.
    G. Velegraki, J. Miao, C. Drivas, B. Liu, S. Kennou, G.S. Armatas, Appl. Catal. B Environ. 221, 635 (2018)CrossRefGoogle Scholar
  7. 7.
    A.A. Oladipo, Process Saf. Environ. Prot. 116, 413 (2018)CrossRefGoogle Scholar
  8. 8.
    H. Sun, T. Wu, Y. Zhang, D.H.L. Ng, G. Wang, New J. Chem. 42, 9006 (2018)CrossRefGoogle Scholar
  9. 9.
    K. Xiao, G. Han, J. Li, Z. Dan, F. Xu, L. Jiang, N. Duan, RSC Adv. 6, 5233 (2016)CrossRefGoogle Scholar
  10. 10.
    H. Chang, H. Wu, Energy Environ. Sci. 6, 3483 (2013)CrossRefGoogle Scholar
  11. 11.
    P. Roy Choudhury, S. Majumdar, G.C. Sahoo, S. Saha, P. Mondal, Chem. Eng. J. 336, 570 (2018)CrossRefGoogle Scholar
  12. 12.
    S.-M. Chuang, V. Ya, C.-L. Feng, S.-J. Lee, K.-H. Choo, C.-W. Li, Sep. Purif. Technol. 191, 167 (2018)CrossRefGoogle Scholar
  13. 13.
    D. Li, G. Ji, J. Hu, S. Hu, X. Yuan, Chem. Eng. J. 334, 1281 (2018)CrossRefGoogle Scholar
  14. 14.
    Y. Li, T. Sasaki, Y. Shimizu, N. Koshizaki, Small 4, 2286 (2008)CrossRefGoogle Scholar
  15. 15.
    Y. Li, T. Sasaki, Y. Shimizu, N. Koshizaki, J. Am. Chem. Soc. 130, 14755 (2008)CrossRefGoogle Scholar
  16. 16.
    V. Koli, A. Dhodamani, K. More, S.F.A. Acquah, D.K. Panda, S. Pawar, S. Delekar, Sol. Energy 149, 188 (2017)CrossRefGoogle Scholar
  17. 17.
    S.D. Delekar, A.G. Dhodamani, K.V. More, T.D. Dongale, R.K. Kamat, S.F.A. Acquah, N.S. Dalal, D.K. Panda, ACS Omega 3, 2743 (2018)CrossRefGoogle Scholar
  18. 18.
    A. Mohamed, T.A. Osman, M.S. Toprak, M. Muhammed, E. Yilmaz, A. Uheida, J. Mol. Catal. Chem. 424, 45 (2016)CrossRefGoogle Scholar
  19. 19.
    Y. Li, Y. Bian, H. Qin, Y. Zhang, Z. Bian, Appl. Catal. B Environ. 206, 293 (2017)CrossRefGoogle Scholar
  20. 20.
    Q. Meng, Y. Zhou, G. Chen, Y. Hu, C. Lv, L. Qiang, W. Xing, Chem. Eng. J. 334, 334 (2018)CrossRefGoogle Scholar
  21. 21.
    W. Wang, M. Lai, J. Fang, C. Lu, Appl. Surf. Sci. 439, 430 (2018)CrossRefGoogle Scholar
  22. 22.
    S.M. Patil, S.P. Deshmukh, A.G. Dhodamani, K.V. More, S.D. Delekar, Curr. Org. Chem. 21, 821 (2017)CrossRefGoogle Scholar
  23. 23.
    L. Liu, C. Luo, J. Xiong, Z. Yang, Y. Zhang, Y. Cai, H. Gu, J. Alloys Compd. 690, 771 (2017)CrossRefGoogle Scholar
  24. 24.
    Y. Li, Z. Liu, Y. Wu, J. Chen, J. Zhao, F. Jin, P. Na, Appl. Catal. B Environ. 224, 508 (2018)CrossRefGoogle Scholar
  25. 25.
    Z. Chen, X. Guo, L. Zhu, L. Li, Y. Liu, L. Zhao, W. Zhang, J. Chen, Y. Zhang, Y. Zhao, J. Mater. Sci. Technol. 34, 1919 (2018)CrossRefGoogle Scholar
  26. 26.
    W. Zhang, Z. Chen, X. Guo, K. Jin, Y. Wang, L. Li, Y. Zhang, Z. Wang, L. Sun, T. Zhang, Electrochim. Acta 278, 51 (2018)CrossRefGoogle Scholar
  27. 27.
    Y. Wu, H. Luo, H. Wang, C. Wang, J. Zhang, Z. Zhang, J. Colloid Interface Sci. 394, 183 (2013)CrossRefGoogle Scholar
  28. 28.
    P.A. Bharad, K. Sivaranjani, C.S. Gopinath, Nanoscale 7, 11206 (2015)CrossRefGoogle Scholar
  29. 29.
    Y. Li, W. Cui, L. Liu, R. Zong, W. Yao, Y. Liang, Y. Zhu, Appl. Catal. B Environ. 199, 412 (2016)CrossRefGoogle Scholar
  30. 30.
    A. Shaikh, S.P. Mishra, P. Mohapatra, S. Parida, J. Nanopart. Res. 19, 206 (2017)CrossRefGoogle Scholar
  31. 31.
    A. Meng, B. Zhu, B. Zhong, L. Zhang, B. Cheng, Appl. Surf. Sci. 422, 518 (2017)CrossRefGoogle Scholar
  32. 32.
    H.R. Kim, A. Razzaq, C.A. Grimes, S.-I. In, J. CO2 Util. 20, 91 (2017)CrossRefGoogle Scholar
  33. 33.
    X. Zuo, K. Chang, J. Zhao, Z. Xie, H. Tang, B. Li, Z. Chang, J. Mater. Chem. A 4, 51 (2016)CrossRefGoogle Scholar
  34. 34.
    P. Li, H. Hu, J. Xu, H. Jing, H. Peng, J. Lu, C. Wu, S. Ai, Appl. Catal. B Environ. 147, 912 (2014)CrossRefGoogle Scholar
  35. 35.
    X. Liao, Y. Zhao, J. Wang, W. Yang, L. Xu, X. Tian, Y. Shuang, K.A. Owusu, M. Yan, L. Mai, Nano Res. 11, 2083 (2018)CrossRefGoogle Scholar
  36. 36.
    M. Yu, S. Zhao, H. Feng, L. Hu, X. Zhang, Y. Zeng, Y. Tong, X. Lu, ACS Energy Lett. 2, 1862 (2017)CrossRefGoogle Scholar
  37. 37.
    S. Ren, H. Li, M. Cui, L. Wang, J. Pu, Appl. Surf. Sci. 401, 362 (2017)CrossRefGoogle Scholar
  38. 38.
    M. Wu, L. Li, Y. Xue, G. Xu, L. Tang, N. Liu, W. Huang, Appl. Catal. B Environ. 228, 103 (2018)CrossRefGoogle Scholar
  39. 39.
    X. Bai, Y. Du, X. Hu, Y. He, C. He, E. Liu, J. Fan, Appl. Catal. B Environ. 239, 204 (2018)CrossRefGoogle Scholar
  40. 40.
    X. Ren, X. Qi, Y. Shen, S. Xiao, G. Xu, Z. Zhang, Z. Huang, J. Zhong, J. Phys. Appl. Phys. 49, 315304 (2016)CrossRefGoogle Scholar
  41. 41.
    X. Tang, Z. Wang, W. Huang, Q. Jing, N. Liu, Mater. Res. Bull. 105, 126 (2018)CrossRefGoogle Scholar
  42. 42.
    W. Liu, J. Cai, Z. Ding, Z. Li, Appl. Catal. B Environ. 174–175, 421 (2015)CrossRefGoogle Scholar
  43. 43.
    A.G. Dhodamani, K.V. More, V.B. Koli, A.R. Shelke, N.G. Deshpande, D.K. Panda, S.D. Delekar, ChemistrySelect 4, 1055 (2019)CrossRefGoogle Scholar
  44. 44.
    X. Yuan, H. Wang, J. Wang, G. Zeng, X. Chen, Z. Wu, L. Jiang, T. Xiong, J. Zhang, H. Wang, Catal. Sci. Technol. 8, 1545 (2018)Google Scholar
  45. 45.
    W. Zhou, Z. Yin, Y. Du, X. Huang, Z. Zeng, Z. Fan, H. Liu, J. Wang, H. Zhang, Small 9, 140 (2013)CrossRefGoogle Scholar
  46. 46.
    X. Wang, J. Ding, S. Yao, X. Wu, Q. Feng, Z. Wang, B. Geng, J Mater Chem A 2, 15958 (2014)CrossRefGoogle Scholar
  47. 47.
    L. Shi, T. Wang, H. Zhang, K. Chang, X. Meng, H. Liu, J. Ye, Adv. Sci. 2, 1500006 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Zhongtao Chen
    • 1
  • Yuanyuan Liu
    • 1
  • Weijie Zhang
    • 1
  • Xinli Guo
    • 1
    Email author
  • Yanmei Zheng
    • 1
  • Xuan Tang
    • 1
  • Yixuan Wang
    • 1
  • Yao Zhang
    • 1
  • Zengmei Wang
    • 1
  • Tong Zhang
    • 2
    Email author
  1. 1.Jiangsu Key Laboratory of Advanced Metallic Materials, School of Materials Science and EngineeringSoutheast UniversityNanjingChina
  2. 2.School of Electronic Science & EngineeringSoutheast UniversityNanjingChina

Personalised recommendations