Advertisement

Effect of glycine on the growth process of Tb3+ doped 2D ZnO nano/micro- structures: from broom shape to star-shape flower morphology

  • Heikham Farida Devi
  • Moirangthem Ranbir Singh
  • Thiyam David SinghEmail author
Article

Abstract

A rational, scalable, reduction-based approach suitable for the control morphological synthesis of ZnO:3 Tb3+ at 100 °C from broom shape microstructure to star shape flower nanostructure morphology is presented here. The influence of the amino acid-glycine as both a reducing agent plus morphing agent, have on the morphology-controlled synthesis is illustrated. This report presents the crucial step for the specific control of the shape of ZnO:3 Tb3+ which was found to be tuning the amount of glycine in the growing reaction system. X-ray diffraction techniques confirmed the crystallization of hexagonal structure for all the ZnO:3 Tb3+ particles. In addition, the plausible mechanism of the architectural evolution of Tb3+ doped ZnO materials is well-ascertained. Emission process from dopant centres and surface states in host lattice, as well as their correlation, was studied. The possible luminescent mechanism is also discussed.

Notes

Acknowledgements

We acknowledged Saif-Nehu for Edax and TEM facility. One of the authors (Heikham Farida Devi) acknowledges to Ministry of Human Resource Development (MHRD), New Delhi for financial support as a fellowship.

Supplementary material

10854_2019_1651_MOESM1_ESM.docx (1.5 mb)
Supplementary material 1 (DOCX 1507 kb)

References

  1. 1.
    S. Eustis, M.A. El-Sayed, Chem. Soc. Rev. 35, 209 (2006)CrossRefGoogle Scholar
  2. 2.
    M. Palumbo, T. Lutz, C.E. Giusca, H. Shizowa, V. Stolozan, D.C. Cox, R.M. Wilson, S.J. Henley, S.R.P. Silva, Crys. Growth Des. 9, 3432–3437 (2009)CrossRefGoogle Scholar
  3. 3.
    S. Ji, L. Yin, G. Liu, L. Zhang, C. Ye, J. Phys. Chem. C 113, 16439–16444 (2009)CrossRefGoogle Scholar
  4. 4.
    Ü. Özgür, Ya.I. Alivov, C. Liu, A. Teke, M.A. Reshchikov, S. Doğan, V. Avrutin, S.-J. Cho, H. Morkoç, J. Appl. Phys. 98, 041301 (2005)CrossRefGoogle Scholar
  5. 5.
    P.K. Khanna, K.W. Jun, K.B. Hong, J.O. Baeg, R.C. Chikate, B.K. Das, Mater. Lett. 59, 1032 (2005)CrossRefGoogle Scholar
  6. 6.
    N.H. Chou, X. Ke, P. Schiffer, R.E. Schaak, J. Am. Chem. Soc. 130, 8140–8141 (2008)CrossRefGoogle Scholar
  7. 7.
    A. Shalav, B.S. Richards, M.A. Green, Sol. Cells 91, 829–842 (2007)CrossRefGoogle Scholar
  8. 8.
    F. Auzel, Chem. Rev. 104, 139–173 (2004)CrossRefGoogle Scholar
  9. 9.
    B. Díaz-Herrera, E. Jiménez-Rodríguez, B. Gonzalez-Diaz, A. Montesdeoca-Santana, J.J. Velázquez, R. Guerrero-Lemus, Thin Solid Films 519, 6110–6114 (2011)CrossRefGoogle Scholar
  10. 10.
    R. Das, N. Khichar, S. Chawla, J. Mater. Sci.: Mater. Electron. 26, 7174–7182 (2015)Google Scholar
  11. 11.
    C. Wang, E. Shen, E. Wang, L. Gao, Z. Kang, C. Tian, Y. Lan, C. Zhang, Mater. Lett. 59, 2867–2871 (2005)CrossRefGoogle Scholar
  12. 12.
    X. Zeng, J. Yuan, L. Zhang, J. Phys. Chem. C 112, 3503–3508 (2008)CrossRefGoogle Scholar
  13. 13.
    S. Bose, T. Kuila, A.K. Mishra, N.H. Kimd, J.H. Lee, J. Mater. Chem. 22, 9696J (2012)CrossRefGoogle Scholar
  14. 14.
    B.N. Dole, V.D. Mote, V.R. Huse, Y. Purushotham, M.K. Lande, K.M. Jadhav, S.S. Shah, Curr. Appl. Phys. 11, 762 (2011)CrossRefGoogle Scholar
  15. 15.
    H.F. Devi, T.D. Singh, Mater. Lett. 231, 8–10 (2018)CrossRefGoogle Scholar
  16. 16.
    J.A. Faucheaux, A.L.D. Stanton, P.K. Jain, J. Phys. Chem. Lett. 5, 976–985 (2014)CrossRefGoogle Scholar
  17. 17.
    H.F. Devi, T.D. Singh, Opt. Commun. 439, 34–37 (2019)CrossRefGoogle Scholar
  18. 18.
    X.G. Peng, L. Manna, W.D. Yang, J. Wickham, E. Scher, A. Kadabanich, A.P. Alivisatos, Nature 404, 59 (2000)CrossRefGoogle Scholar
  19. 19.
    V. Kumar, S. Som, V. Kumar, V. Kumar, O.M. Ntwaeaborwa, E. Coetsee, H.C. Swart, Chem. Eng. J. 255, 541–552 (2014)CrossRefGoogle Scholar
  20. 20.
    G.L. Kabongo, G.H. Mhlongo, T. Malwela, B.M. Mothudi, K.T. Hillie, M.S. Dhlamini, J. Alloys Compd. 591, 156–163 (2014)CrossRefGoogle Scholar
  21. 21.
    N.S. Singh, S.D. Singh, S.D. Meetei, Chin. Phys. B 23, 058104 (2014)CrossRefGoogle Scholar
  22. 22.
    H.Y. Lin, C.L. Cheng, Y.S. Lin, Y. Hung, C.Y. Mou, Y.F. Chen, Nanoscale Res. Lett. 6, 503 (2011)CrossRefGoogle Scholar
  23. 23.
    S.M. Liu, F.Q. Liu, H.Q. Guo, Z.H. Zhang, Z.G. Wang, Phys. Lett. A 271, 128–133 (2000)CrossRefGoogle Scholar
  24. 24.
    F. Hamdani, M. Yeadon, D.J. Smith, H. Tang, W. Kim et al., J. Appl. Phys. 83, 983 (1998)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Heikham Farida Devi
    • 1
  • Moirangthem Ranbir Singh
    • 1
  • Thiyam David Singh
    • 1
    Email author
  1. 1.Department of ChemistryNational Institute of Technology ManipurLangolIndia

Personalised recommendations