Advertisement

Effects of laser pulse energy on the structural, optical and electrical properties of pulsed laser deposited Ga-doped ZnO thin films

  • Guankong Mo
  • Zimei Tang
  • Huan He
  • Jiahui Liu
  • Yuechun Fu
  • Xiaoming ShenEmail author
Article
  • 11 Downloads

Abstract

Transparent conducting Ga-doped ZnO (GZO) thin films were deposited on glass substrate by pulsed laser deposition (PLD). The effects of laser pulse energy ranging from 80 to 200 mJ on microstructural, surface morphology, electrical and optical properties of GZO films were investigated in detail. XRD patterns have shown that all samples were hexagonal wurtzite structure presenting predominant orientation along the (002) c-axis direction, and the film obtained at 160 mJ showed the optimal crystallinity. The Raman spectra demonstrate that GZO films have oxygen vacancies, Zinc interstitials, and residual stress. The compact, homogenous and flat surface morphology of GZO films were observed by AFM. Hall effect measurements revealed that the electrical properties of samples were dominated largely by the crystallinity and the minimum resistivity of 6.10 × 10−4 Ω cm was obtained when GZO film grown at 160 mJ. Optical transmission spectra displayed an average transmittance higher than 90.6% for all GZO samples in the visible range. The film deposited at 160 mJ exhibited the maximum figure of merit of 22.70 × 10−3 Ω−1, owing to the low resistivity and high transmittance.

Notes

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (61474030), the Guangxi Natural Science Foundation (2015GXNSFAA139265), the Foundation of Guangxi Science & Technology Development Project (1598008-15) and the Foundation of Nanning Municipal Science & Technology Development Project (20151268).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    J. Ungula, B.F. Dejene, H.C. Swart, Band gap engineering, enhanced morphology and photoluminescence of undoped, Ga and/or Al-doped ZnO nanoparticles by reflux precipitation method. J. Lumin. 195, 54–60 (2018).  https://doi.org/10.1016/j.jlumin.2017.11.007 CrossRefGoogle Scholar
  2. 2.
    S. Guan, L. Yamawaki, P. Zhang, X. Zhao, Charge-transfer effect of GZO film on photochemical water splitting of transparent ZnO@GZO films by RF magnetron sputtering. Top. Catal. 61, 1585–1590 (2018).  https://doi.org/10.1007/s11244-018-0916-3 CrossRefGoogle Scholar
  3. 3.
    A. Tomeda, T. Ishibe, T. Taniguchi, R. Okuhata, K. Watanabe, Y. Nakamura, Enhanced thermoelectric performance of Ga-doped ZnO film by controlling crystal quality for transparent thermoelectric films. Thin Solid Films 666, 185–190 (2018).  https://doi.org/10.1016/j.tsf.2018.09.045 CrossRefGoogle Scholar
  4. 4.
    J. Chen, Y. Sun, X. Lv, D. Li, L. Fang, H. Wang, X. Sun, C. Huang, H. Yu, P. Feng, Preparation and characterization of high-transmittance AZO films using RF magnetron sputtering at room temperature. Appl. Surf. Sci. 317, 1000–1003 (2014).  https://doi.org/10.1016/j.apsusc.2014.08.051 CrossRefGoogle Scholar
  5. 5.
    L. Xu, X. Li, Y. Chen, F. Xu, Structural and optical properties of ZnO thin films prepared by sol–gel method with different thickness. Appl. Surf. Sci. 257, 4031–4037 (2011).  https://doi.org/10.1016/j.apsusc.2010.11.170 CrossRefGoogle Scholar
  6. 6.
    H. Chin, L. Chao, C. Wu, Crystal, optical, and electrical characteristics of transparent conducting gallium-doped zinc oxide films deposited on flexible polyethylene naphthalate substrates using radio frequency magnetron sputtering. Mater. Res. Bull. 79, 90–96 (2016).  https://doi.org/10.1016/j.materresbull.2016.03.017 CrossRefGoogle Scholar
  7. 7.
    G. Jo, J. Koh, Prunaa, Laser annealing effects on Ga dopants for ZnO thin films for transparent conducting oxide applications. Ceram. Int. 45, 6190–6196 (2019).  https://doi.org/10.1016/j.ceramint.2018.12.096 CrossRefGoogle Scholar
  8. 8.
    H. Kajii, Y. Mohri, H. Okui, M. Kondow, Y. Ohmori, Improved characteristics of conventional and inverted polymer photodetectors using phosphonic acid-based self-assembled monolayer treatment for interfacial engineering of Ga-doped ZnO electrodes. Jpn. J. Appl. Phys. 57, 03DA03 (2018).  https://doi.org/10.7567/JJAP.57.03DA03 CrossRefGoogle Scholar
  9. 9.
    O. Lassar, G. Merad, S. Lardjane, H. Si Abdelkader, A hybrid density functional study of optical and electronic properties of Al\Ga-codoped ZnO. Optik 179, 566–573 (2019).  https://doi.org/10.1016/j.ijleo.2018.10.135 CrossRefGoogle Scholar
  10. 10.
    C. Lee, C. Jeon, B. Lee, S. Jeong, Abrupt conversion of the conductivity and band-gap in the sputter grown Ga-doped ZnO films by a change in growth ambient: effects of oxygen partial pressure. J. Alloys Compd. 742, 977–985 (2018).  https://doi.org/10.1016/j.jallcom.2018.01.351 CrossRefGoogle Scholar
  11. 11.
    H. Song, H. Makino, J. Nomoto, N. Yamamoto, T. Yamamoto, Improved moisture stability of thin Ga-doped ZnO films by indium codoping. Appl. Surf. Sci. 457, 241–246 (2018).  https://doi.org/10.1016/j.apsusc.2018.06.281 CrossRefGoogle Scholar
  12. 12.
    R. Horng, S. Ou, C. Huang, P. Ravadgar, C. Wu, Effects of Ga concentration and rapid thermal annealing on the structural, optoelectronic and photoluminescence properties of Ga-doped ZnO thin films. Thin Solid Films 605, 30–36 (2016).  https://doi.org/10.1016/j.tsf.2015.12.006 CrossRefGoogle Scholar
  13. 13.
    M.T. Ferdaous, S.A. Shahahmadi, M.M.I. Sapeli, P. Chelvanathan, M. Akhtaruzzaman, S.K. Tiong, N. Amin, Interplay between variable direct current sputtering deposition process parameters and properties of ZnO: Ga thin films. Thin Solid Films 660, 538–545 (2018).  https://doi.org/10.1016/j.tsf.2018.06.005 CrossRefGoogle Scholar
  14. 14.
    M. Sbeta, A. Atilgan, A. Atli, A. Yildiz, Influence of the spin acceleration time on the properties of ZnO: Ga thin films deposited by sol-gel method. J. Sol Gel. Sci. Technol. 86, 513–520 (2018).  https://doi.org/10.1007/s10971-018-4652-8 CrossRefGoogle Scholar
  15. 15.
    H. Kang, Z. Lu, Z. Zhong, J. Gu, Structural, optical and electrical characterization of Ga-Mg co-doped ZnO transparent conductive films. Mater. Lett. 215, 102–105 (2018).  https://doi.org/10.1016/j.matlet.2017.12.072 CrossRefGoogle Scholar
  16. 16.
    C. Tiena, K. Yua, T. Tsaia, M. Liu, Effect of RF power on the optical, electrical, mechanical and structural properties of sputtering Ga-doped ZnO thin films. Appl. Surf. Sci. 354, 79–84 (2015).  https://doi.org/10.1016/j.apsusc.2015.02.154 CrossRefGoogle Scholar
  17. 17.
    E. Muchuweni, T.S. Sathiaraj, H. Nyakotyo, Effect of gallium doping on the structural, optical and electrical properties of zinc oxide thin films prepared by spray pyrolysis. Ceram. Int. 42, 10066–10070 (2016).  https://doi.org/10.1016/j.ceramint.2016.03.110 CrossRefGoogle Scholar
  18. 18.
    R.S. Ajimsha, A.K. Das, P. Misra, M.P. Joshi, L.M. Kukreja, R. Kumar, T.K. Sharma, S.M. Oak, Observation of low resistivity and high mobility in Ga doped ZnO thin films grown by buffer assisted pulsed laser deposition. J. Alloys Compd. 638, 55–58 (2015).  https://doi.org/10.1016/j.jallcom.2015.02.162 CrossRefGoogle Scholar
  19. 19.
    J. Kim, I. Yer, Growth of ZnO nanowire arrays on Ga-doped ZnO transparent conductive layers. Ceram. Int. 41, 10227–10231 (2015).  https://doi.org/10.1016/j.ceramint.2015.04.130 CrossRefGoogle Scholar
  20. 20.
    P.S. Shewale, S.H. Lee, N.K. Lee, Y.S. Yu, Oxygen pressure dependent structural and optoelectronic properties of pulsed laser deposited Ga-doped ZnO thin films. Mater. Res. Express 2, 046401 (2015).  https://doi.org/10.1088/2053-1591/2/4/046401 CrossRefGoogle Scholar
  21. 21.
    S.D. Shinde, A.V. Deshmukh, S.K. Date, V.G. Sathe, K.P. Adhi, Effect of Ga doping on micro/structural, electrical and optical properties of pulsed laser deposited ZnO thin films. Thin Solid Films 520, 1212–1217 (2011).  https://doi.org/10.1016/j.tsf.2011.06.094 CrossRefGoogle Scholar
  22. 22.
    H. Mahdhi, S. Alaya, J.L. Gauffier, K. Djessas, Z.B. Ayadi, Influence of thickness on the structural, optical and electrical properties of Ga-doped ZnO thin films deposited by sputtering magnetron. J. Alloys Compd. 695, 697–703 (2017).  https://doi.org/10.1016/j.jallcom.2016.11.117 CrossRefGoogle Scholar
  23. 23.
    S. Yu, W. Zhang, L. Li, H. Dong, D. Xu, Y. Jin, Structural, electrical, photoluminescence and optical properties of n-type conducting, phosphorus-doped ZnO thin films prepared by pulsed laser deposition. Appl. Surf. Sci. 298, 44–49 (2014).  https://doi.org/10.1016/j.apsusc.2014.01.037 CrossRefGoogle Scholar
  24. 24.
    G. Kaurn, A. Mitra, K.L. Yadav, Pulsed laser deposited Al-doped ZnO thin films for optical applications. Prog. Natl. Sci. Mater. Int. 25, 12–21 (2015).  https://doi.org/10.1016/j.pnsc.2015.01.012 CrossRefGoogle Scholar
  25. 25.
    P.S. Shewale, S.H. Lee, Y.S. Yu, Pulse repetition rate dependent structural, surface morphological and optoelectronic properties of Ga-doped ZnO thin films grown by pulsed laser deposition. J. Alloys Compd. 725, 1106–1114 (2017).  https://doi.org/10.1016/j.jallcom.2017.07.269 CrossRefGoogle Scholar
  26. 26.
    C. Bundesmann, N. Ashkenov, M. Schubert, D. Spemann, T. Butz, E.M. Kaidashev, M. Lorenz, M. Grundmann, Raman scattering in ZnO thin films doped with Fe, Sb, Al, Ga, and Li. Appl. Phys. Lett. 83, 1974 (2003).  https://doi.org/10.1063/1.1609251 CrossRefGoogle Scholar
  27. 27.
    A. Escobedo-Morales, U. Pal, Effect of In, Sb and Ga doping on the structure and vibrational modes of hydrothermally grown ZnO nanostructures. Curr. Appl. Phys. 11, 525–531 (2011).  https://doi.org/10.1016/j.cap.2010.09.007 CrossRefGoogle Scholar
  28. 28.
    C. Lung, M. Toma, M. Pop, D. Marconi, A. Pop, Characterization of the structural and optical properties of ZnO thin films doped with Ga, Al and (Al + Ga). J. Alloys Compd. 725, 1238–1243 (2017).  https://doi.org/10.1016/j.jallcom.2017.07.265 CrossRefGoogle Scholar
  29. 29.
    H.J. Al-Asedy, N. Bidin, K.N. Abbas, M.A. Al-Azawi, Structure, morphology and photoluminescence attributes of Al/Ga co-doped ZnO nanofilms: role of annealing time. Mater. Res. Bull. 97, 71–80 (2018).  https://doi.org/10.1016/j.materresbull.2017.08.050 CrossRefGoogle Scholar
  30. 30.
    E. Muchuweni, T.S. Sathiaraj, H. Nyakotyo, Hydrothermal synthesis of ZnO nanowires on rf sputtered Ga and Al co-doped ZnO thin films for solar cell application. J. Alloys Compd. 721, 45–54 (2017).  https://doi.org/10.1016/j.jallcom.2017.05.317 CrossRefGoogle Scholar
  31. 31.
    Y. Chen, F. Meng, F. Ge, G. Xu, F. Huang, Ga-doped ZnO films magnetron sputtered at ultralow discharge voltages: significance of controlling defect generation. Thin Solid Films 615, 19–24 (2016).  https://doi.org/10.1016/j.tsf.2018.03.019 CrossRefGoogle Scholar
  32. 32.
    W. Liu, S. Wu, C. Hung, C. Tseng, Y. Chang, Improving the optoelectronic properties of gallium ZnO transparent conductive thin films through titanium doping. J. Alloys Compd. 616, 268–274 (2014).  https://doi.org/10.1016/j.jallcom.2014.06.175 CrossRefGoogle Scholar
  33. 33.
    H. Chin, L. Chao, C. Wu, Crystal, optical, and electrical characteristics of transparent conducting gallium-doped zinc oxide films deposited on flexible polyethylene naphthalate substrates using radio frequency magnetron sputtering. Mater. Res. Bull. 79, 90–96 (2016).  https://doi.org/10.1016/j.materresbull.2016.03.017 CrossRefGoogle Scholar
  34. 34.
    N. Akin, B. Kinaci, Y. Ozen, S. Ozcelik, Influence of RF power on the opto-electrical and structural properties of gallium-doped zinc oxide thin films. J. Mater. Sci.: Mater. Electron. 28, 7376–7384 (2017).  https://doi.org/10.1007/s10854-017-6426-4 Google Scholar
  35. 35.
    Y. Ko, K. Kim, Y. Kim, Effects of substrate temperature on the Ga-doped ZnO films as an anode material of organic light emitting diodes. Superlattices Microstruct. 51, 933–941 (2012).  https://doi.org/10.1016/j.spmi.2012.03.012 CrossRefGoogle Scholar
  36. 36.
    X. Du, J. Li, X. Bi, The role of Ga partial substitution for Al in the enhanced conductivity of transparent AZO thin film. J. Alloys Compd. 698, 128–132 (2017).  https://doi.org/10.1016/j.jallcom.2016.12.248 CrossRefGoogle Scholar
  37. 37.
    A.S. Pugalenthi, R. Balasundaraprabhu, V. Gunasekaran, N. Muthukumarasamy, S. Prasanna, S. Jayakumar, Effect of thickness on the structural, optical and electrical properties of RF magnetron sputtered GZO thin films. Mater. Sci. Semicond. Process. 29, 176–182 (2015).  https://doi.org/10.1016/j.mssp.2014.02.014 CrossRefGoogle Scholar
  38. 38.
    K. Seo, H. Shin, J. Lee, K. Chung, H. Kim, The effects of thickness on the electrical, optical, structural and morphological properties of Al and Ga co-doped ZnO films grown by linear facing target sputtering. Vacuum 101, 250–256 (2014).  https://doi.org/10.1016/j.vacuum.2013.09.009 CrossRefGoogle Scholar
  39. 39.
    D. Kim, H. Kim, Initial vacuum effects on the properties of sputter deposited Ga-doped ZnO thin films. J. Alloys Compd. 709, 627–632 (2017).  https://doi.org/10.1016/j.jallcom.2017.03.189 CrossRefGoogle Scholar
  40. 40.
    Yu. Zeng, XiFang Chen, Zao Yi, Yougen Yi, Xibin Xu, Fabrication of p-n heterostructure ZnO/Si moth-eye structures: antireflection, enhanced charge separation and photocatalytic properties. Appl. Surf. Sci. 441, 40–48 (2018).  https://doi.org/10.1016/j.apsusc.2018.02.002 CrossRefGoogle Scholar
  41. 41.
    H. Wang, Y. Sun, L. Fang, L. Wang, B. Chang, X. Sun, L. Ye, Growth and characterization of high transmittance GZO films prepared by sol-gel method. Thin Solid Films 615, 19–24 (2016).  https://doi.org/10.1016/j.spmi.2014.06.002 CrossRefGoogle Scholar
  42. 42.
    F.A. Garcés, N. Budini, R.D. Arce, J.A. Schmidt, Effect of thickness on structural and electrical properties of Al-doped ZnO films. Thin Solid Films 574, 162–168 (2015).  https://doi.org/10.1016/j.tsf.2014.12.013 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Key Laboratory of New Processing Technology for Materials and Nonferrous Metal, Ministry of Education, College of Resourrces, Environmental and MaterialsGuangxi UniversityNanningPeople’s Republic of China

Personalised recommendations