Development of aluminosilicate glass fiber doped with high Pr3+ concentration for all-optical fiber isolator application

  • K. LingannaEmail author
  • S. Ju
  • Y. Lee
  • W.-T. HanEmail author


A new SiO2–Al2O3–B2O3–Pr6O11 glass fiber with high Pr3+ concentration was developed by the melt quenching technique and the fiber drawing process for all-optical fiber isolator application. The thermal analysis was carried for the Pr3+-doped bulk aluminosilicate glass by simultaneous thermal analyzer and its glass stability was found to be 206 °C. Magneto-optical characteristics of the fabricated aluminosilicate glass fiber with high Pr3+ concentration were studied and found that the measured Faraday rotation at 650 nm linearly increased from 0° to 85° with the increase of the magnetic field varied from 0 to 0.142 T. The Verdet constant of the fabricated fiber was determined to be 17.28 rad/(T m) at 650 nm, demonstrating its feasibility as an attractive candidate of all-optical fiber isolator for high power laser applications.



This work was partially supported by KEPCO Research Institute (KEPRI) (Project Number: KEPRI-16-23), South Korea.


  1. 1.
    J. Ballato, E. Snitzer, Fabrication of fibers with high rare-earth concentrations for Faraday isolator applications. Appl. Opt. 34, 6848–6854 (1995)CrossRefGoogle Scholar
  2. 2.
    Q. Chen, Q. Ma, H. Wang, Q. Wang, Y. Hao, Q. Chen, Properties and structure of Faraday rotating glasses for magneto optical current transducer. Bol. Soc. Esp. Ceram. Vidrio 56, 1–12 (2017)CrossRefGoogle Scholar
  3. 3.
    Q. Chen, Q. Ma, H. Wang, Q. Chen, Diamagnetic tellurite glass and fiber based magneto-optical current transducer. Appl. Opt. 54, 8664–8669 (2015)CrossRefGoogle Scholar
  4. 4.
    R.M. Silva, H. Martins, I. Nascimento, J.M. Baptista, A.L. Ribeiro, J.L. Santos, P. Jorge, O. Frazão, Optical current sensors for high power systems: a review. Appl. Sci. 2, 602–628 (2012)CrossRefGoogle Scholar
  5. 5.
    L. Sun, S. Jiang, J.D. Zuegel, J.R. Marciante, All-fiber optical isolator based on Faraday rotation in highly terbium-doped fiber. Opt. Lett. 35, 706–708 (2010)CrossRefGoogle Scholar
  6. 6.
    L. Sun, S. Jiang, J.R. Marciante, Compact all-fiber optical Faraday components using 65-wt%-terbium-doped fiber with a record Verdet constant of − 32 rad/(Tm). Opt. Express 18, 12191–12196 (2010)CrossRefGoogle Scholar
  7. 7.
    P.R. Watekar, S. Ju, S.-A. Kim, S. Jeong, Y. Kim, W.-T. Han, Development of a highly sensitive compact sized optical fiber current sensor. Opt. Express 18, 17096–17105 (2010)CrossRefGoogle Scholar
  8. 8.
    P.R. Watekar, H. Yang, S. Ju, W.-T. Han, Enhanced current sensitivity in the optical fiber doped with CdSe quantum dots. Opt. Express 17, 3157–3164 (2009)CrossRefGoogle Scholar
  9. 9.
    S. Ju, S. Jeong, Y. Kim, P.R. Watekar, W.-T. Han, Demonstration of All-optical fiber isolator based on a CdSe quantum dots doped optical fiber operating at 660 nm. J. Lightwave Technol. 31, 2793–2798 (2013)CrossRefGoogle Scholar
  10. 10.
    S. Ju, J. Kim, K. Linganna, P.R. Watekar, S.G. Kang, B.H. Kim, S. Boo, Y. Lee, Y. HoAn, C.J. Kim, W.-T. Han, Temperature and vibration dependence of the faraday effect of Gd2O3 NPs-doped alumino-silicate glass optical fiber. Sensors 18, 988 (2018)CrossRefGoogle Scholar
  11. 11.
    D.K. Wilson, Optical isolators adapt to communication needs. Laser Focus World 27, 175–180 (1991)Google Scholar
  12. 12.
    K. Tanaka, N. Tatehata, K. Fujita, K. Hirao, N. Soga, The Faraday effect and magneto-optical figure of merit in the visible region for lithium borate glasses containing Pr3+. J. Phys. D 31, 2622–2627 (1998)CrossRefGoogle Scholar
  13. 13.
    D.R. MacFarlane, C.R. Bradbury, P.J. Newman, J. Javorniczky, Faraday rotation in rare earth fluorozirconate glasses. J. Non-Cryst. Solids 213 & 214, 199–204 (1997)CrossRefGoogle Scholar
  14. 14.
    A.V. Malakhovskii, I.S. Edelman, Y. Radzyner, Y. Yeshurun, A.M. Potseluyko, T.V. Zarubina, A.V. Zamkov, A.I. Zaitzev, Magnetic and magneto-optical properties of oxide glasses containing Pr3+, Dy3+ and Nd3+ ions. J. Magn. Magn. Mater. 263, 161–172 (2003)CrossRefGoogle Scholar
  15. 15.
    J. Qiu, K. Hirao, The Faraday effect in diamagnetic glasses. J. Mater. Res. 13, 1358–1362 (1998)CrossRefGoogle Scholar
  16. 16.
    G.T. Petrovskii, I.S. Edelman, T.V. Zarubina, A.V. Malakhovskii, V.N. Zabluda, MYu. Ivanov, Faraday effect and spectral properties of high-concentrated rare earth oxide glasses in visible and near UV region. J. Non-Cryst. Solids 130, 35–40 (1991)CrossRefGoogle Scholar
  17. 17.
    J. Qiu, K. Tanaka, N. Sugimoto, K. Hirao, Faraday effect in Tb3+-containing borate, fluoride and fluorophosphate glasses. J. Non-Cryst. Solids 213&214, 193–198 (1997)CrossRefGoogle Scholar
  18. 18.
    A. Potseluyko, I. Edelman, A. Malakhovskii, Y. Yeshurun, T. Zarubina, A. Zamkov, A. Zaitsev, RE containing glasses as effective magneto-optical materials for 200–400 nm range. Microelectron. Eng. 69, 216–220 (2003)CrossRefGoogle Scholar
  19. 19.
    C.B. Pedroso, E. Munin, A.B. Villaverde, J.A. Medeiros Neto, N. Aranha, L.C. Barbosa, High Verdet constant Ga:S:La:O chalcogenide glasses for magneto-optical devices. Opt. Eng. 38(2), 214–219 (1999)CrossRefGoogle Scholar
  20. 20.
    C.B. Rubinstein, L.G.V. Uitert, W.H. Grodkiewicz, Magneto-optical properties of rare earth (III) aluminum garnets. J. Appl. Phys. 35, 3069–3070 (1964)CrossRefGoogle Scholar
  21. 21.
    S. Ganschow, D. Klimm, P. Reiche, R. Uecker, On the crystallization of terbium aluminium garnet. Cryst. Res. Technol. 34, 615–619 (1999)CrossRefGoogle Scholar
  22. 22.
    G. Gao, A. Winterstein-Beckmann, O. Surzhenko, C. Dubs, J. Dellith, M.A. Schmidt, L. Wondraczek, Faraday rotation and photoluminescence in heavily Tb3+-doped GeO2–B2O3–Al2O3–Ga2O3 glasses for fiber-integrated magneto-optics. Sci. Rep. 5, 8942 (2015)CrossRefGoogle Scholar
  23. 23.
    T. Hayakawa, M. Nogami, N. Nishi, N. Sawanobori, Faraday rotation effect of highly Tb2O3/Dy2O3-concentrated B2O3–Ga2O3–SiO2–P2O5 glasses. Chem. Mater. 14, 3223–3225 (2002)CrossRefGoogle Scholar
  24. 24.
    K. Tanaka, K. Hirao, N. Soga, Large verdet constant of 30Tb2O3·70B2O3 glass. Jpn. J. Appl. Phys. 34, 4825–4826 (1995)CrossRefGoogle Scholar
  25. 25.
    V.I. Savinkov, V.N. Sigaev, N.V. Golubev, P.D. Sarkisov, A.V. Masalov, A.P. Sergeev, Borogermanate glasses with a high terbium oxide content. J. Non-Cryst. Solids 356, 1655–1659 (2010)CrossRefGoogle Scholar
  26. 26.
    J.T. Kohli, in Rare Elements in Glasses, ed. J.E. Shelby, vols. 94 & 95 (TransTech, Aedermannsdorf, 1994), p. 125Google Scholar
  27. 27.
    Y. Xu, H. Guo, X. Xiao, P. Wang, X. Cui, M. Lu, C. Lin, S. Dai, B. Peng, High Verdet constants and diamagnetic responses of GeS2–In2S3–PbI2 chalcogenide glasses for integrated optics applications. Opt. Express 25, 20410–20420 (2017)CrossRefGoogle Scholar
  28. 28.
    T. Mizumoto, R. Takei, Y. Shoji, Waveguide optical isolators for integrated optics. IEEE J. Quantum Electron. 48, 252–260 (2012)CrossRefGoogle Scholar
  29. 29.
    H. Kato, T. Matsushita, A. Takayama, M. Egawa, K. Nishimura, M. Inoue, Effect of optical losses on optical and magneto-optical properties of one-dimensional magneto-photonic crystals for use in optical isolator devices. Opt. Commun. 219, 271–276 (2003)CrossRefGoogle Scholar
  30. 30.
    A. Makishima, Y. Tamura, T. Sakaino, Elastic moduli and refractive indices of aluminosilicate glasses containing Y2O3, La2O3, and TiO2. J. Am. Ceram. Soc. 61, 247–249 (1978)CrossRefGoogle Scholar
  31. 31.
    M.J. Dejneka, B.Z. Hanson, S.G. Crigler, L.A. Zenteno, J.D. Minelly, D.C. Allan, W.J. Miller, D. Kuksenkov, La2O3–Al2O3–SiO2 glasses for high-power, Yb3-doped 980-nm fiber lasers. J. Am. Ceram. Soc. 85, 1100–1106 (2002)CrossRefGoogle Scholar
  32. 32.
    J.K. Richard Weber, J.G. Abadie, T.S. Key, K. Hiera, P.C. Nordine, R.W. Waynant, I.K. IIev, Synthesis and optical properties of rare-earth-aluminum oxide glasses. J. Am. Ceram. Soc. 85, 1309–1311 (2002)CrossRefGoogle Scholar
  33. 33.
    S. Iftekhar, J. Grins, M. Eden, Composition-property relationships of the La2O3–Al2O3–SiO2 glass system. J. Non-Cryst. Solids 356, 1043–1048 (2010)CrossRefGoogle Scholar
  34. 34.
    Y. Fujimoto, O. Ishii, M. Yamazaki, Multi-colour laser oscillation in Pr3+-doped fluoro-aluminate glass fibre pumped by 442.6 nm GaN-semiconductor laser. Electron. Lett. 45, 1–3 (2009)CrossRefGoogle Scholar
  35. 35.
    H. Tawarayama, E. Ishikawa, K. Yamanaka, K. Itoh, K. Okada, H. Aoki, H. Yanagita, Y. Matsuoka, H. Toratani, Optical amplification at 1.3 μm in a praseodymium-doped sulfide-glass fiber. J. Am. Ceram. Soc. 83, 792–796 (2000)CrossRefGoogle Scholar
  36. 36.
    D.R. Simons, A.J. Faber, H. de Waal, GeSx glass for Pr3+-doped fiber amplifiers at 1.3 μm. J. Non-Cryst. Solids 185, 283–288 (1995)CrossRefGoogle Scholar
  37. 37.
    B. Richards, Y. Tsang, D. Binks, J. Lousteau, A. Jha, ~ 2 lm Tm3+/Yb3+-doped tellurite fibre laser. J. Mater. Sci. 20, S317–S320 (2009)Google Scholar
  38. 38.
    A. Jha, S. Shen, L. Huang, B. Richards, J. Lousteau, Rare-earth doped glass waveguides for visible, near-IR and mid-IR lasers and amplifiers. J. Mater. Sci. 18, S315–S320 (2007)Google Scholar
  39. 39.
    A. Dietzel, Glass structure and glass properties. Glasstech. Ber. 22, 41 (1968)Google Scholar
  40. 40.
    M. Saad, M. Poulain, Glass-forming ability criterion. Mater. Sci. Forum 19–20, 11–18 (1987)CrossRefGoogle Scholar
  41. 41.
    A. Hruby, Evaluation of glass-forming tendency by means of DTA. Czech. J. Phys. B 22, 1187–1193 (1972)CrossRefGoogle Scholar
  42. 42.
    X. Qiao, X. Fan, M. Wang, Luminescence behavior of Er3+ in glass ceramics containing BaF2 nanocrystals. Scr. Mater. 55, 211–214 (2006)CrossRefGoogle Scholar
  43. 43.
    H. Nguyen, M. Tuomisto, J. Oksa, T. Salminen, M. Lastusaari, L. Petit, Upconversion in low rare-earth concentrated phosphate glasses using direct NaYF4:Er3+, Yb3+ nanoparticles doping. Scr. Mater. 139, 130–133 (2017)CrossRefGoogle Scholar
  44. 44.
    R. Serber, The theory of the Faraday effect in molecules. Phys. Rev. 41, 489–506 (1932)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Optical Lens Research CenterKorea Photonics Technology InstituteGwangjuSouth Korea
  2. 2.School of Electrical Engineering and Computer ScienceGwangju Institute of Science and TechnologyGwangjuSouth Korea

Personalised recommendations