Advertisement

Development of highly luminescent PMMA films doped with Eu3+β-diketonate coordinated on ancillary ligand

  • L. H. C. Francisco
  • M. C. F. C. FelintoEmail author
  • H. F. Brito
  • E. E. S. Teotonio
  • O. L. Malta
Article
  • 31 Downloads

Abstract

In this work, [Eu(tta)3(4-picNO)2] and [Eu(dbm)3(4-picNO)] complexes were incorporated on different concentrations (x = 1, 3, 5, 10 and 15%) in PMMA polymeric matrix (4-picNO: 4-Methylpyridine N-oxide) by the solvent casting method, yielding transparent and highly luminescent polymeric films. These materials were analyzed by X-ray diffraction, scanning electron microscopy and by energy dispersive, ultraviolet–visible spectroscopy, luminescence and vacuum ultraviolet–ultraviolet spectroscopies. The luminescence spectra of doped PMMA films are in agreement with an efficient intramolecular diketonate (tta) ligand-to-europium energy transfer. Furthermore, the values of experimental intensity parameters (Ω2,4) for luminescent polymeric materials were quite similar to those ones for isolated complexes, indicating that there is a homogeneous dispersion of Eu3+ complexes in the polymeric matrix, preserving their chemical and structural features. These behavior were also observed from the CIE diagram that show great similarity between the (x,y) coordinates for the doped PMMA samples compared to the isolated β-diketonate complexes with a reddish color tuning. The photostability investigation of the doped PMMA polymeric films and Eu3+ complexes has been also reported.

Notes

Acknowledgements

The authors thank the Brazilian Agencies: FAPESP, CAPES, CNPq, CNEN for financial support. Dr Veronica C. Teixeira, Dr Douglas Galante and Mr Leonardo M. Kofukuda (TGM beamline) from the Brazilian Synchrotron Light Laboratory, Brazilian Center for Research in Energy and Materials (LNLS and CNPEM), Campinas, SP, Brazil, are gratefully acknowledged for their assistance during vacuum UV-excited luminescence experiments.

Supplementary material

10854_2019_1639_MOESM1_ESM.pdf (289 kb)
Supplementary material 1 (PDF 289 kb)

References

  1. 1.
    J.-C.G. Bunzli, On the design of highly luminescent lanthanide complexes. Coord. Chem. Rev. 293–294, 19–47 (2015)CrossRefGoogle Scholar
  2. 2.
    L.D. Carlos, R.A.S. Ferreira, V. de Zea Bermudez, S.J.L. Ribeiro, Lanthanide-containing light-emitting organic–inorganic hybrids: a bet on the future. Adv. Mater. 21(5), 509–534 (2009)CrossRefGoogle Scholar
  3. 3.
    V.S. Sastri, J.C. Bunzli, J.R. Perumareddi, V.R. Rao, G.V.S. Rayudu, Modern aspects of rare earths and their complexes (Elsevier, Amsterdam, 2003)Google Scholar
  4. 4.
    B.K. Gupta, D. Haranath, S. Saini, V.N. Singh, V. Shanker, Synthesis and characterization of ultra-fine Y2O3:Eu3+ nanophosphors for luminescent security ink applications. Nanotechnology 21(5), 055607 (2010)CrossRefGoogle Scholar
  5. 5.
    J. Kido, H. Hayase, K. Hongawa, K. Nagai, K. Okuyama, Bright red light-emitting organic electroluminescent devices having an europium complex as an emitter. Appl. Phys. Lett. 65(17), 2124–2126 (1994)CrossRefGoogle Scholar
  6. 6.
    S. Heer, K. Kompe, H.U. Gudel, M. Haase, Highly efficient multicolour upconversion emission in transparent colloids of lanthanide-doped NaYF4 nanocrystals. Adv. Mater. 16(23–24), 2102–2105 (2004)CrossRefGoogle Scholar
  7. 7.
    D.-C. Yu, R. Martín-Rodríguez, Q.Y. Zhang, A. Meijerink, F.T. Rabouw, Multi-photon quantum cutting in Gd2O2:Tm3+ to enhance the photo-response of solar cells. Light 4(10), e3441–e3448 (2015)CrossRefGoogle Scholar
  8. 8.
    J.-C. Bunzil, S.V. Eliseeva, Lanthanide NIR luminescence for telecommunications, bioanalyses and solar energy conversion. J. Rare Earths 28(6), 824–842 (2010)CrossRefGoogle Scholar
  9. 9.
    A. Nadort, J. Zhaob, E.M. Goldys, Lanthanide upconversion luminescence at the nanoscale: fundamentals and optical properties. Nanoscale 8(27), 13099–13130 (2016)CrossRefGoogle Scholar
  10. 10.
    O.A. Savchuk, J.J. Carvajal, C.D.S. Brites, L.D. Carlos, M. Aguilo, F. Diaz, Upconversion thermometry: a new tool to measure the thermal resistance of nanoparticles. Nanoscale 10(14), 6602–6610 (2018)CrossRefGoogle Scholar
  11. 11.
    J.-C.G. Bunzil, Lanthanide light for biology and medical diagnosis. J. Lumin. 170, 866–878 (2016)CrossRefGoogle Scholar
  12. 12.
    G.F. Sá, O.L. Malta, C.D. Donega, A.M. Simas, R.L. Longo, P.A. Santa-Cruz, E.F. Silva Jr., Spectroscopic properties and design of highly luminescent lanthanide coordination complexes. Coord. Chem. Rev. 196(1), 165–195 (2000)CrossRefGoogle Scholar
  13. 13.
    H.F. Brito, O.L. Malta, M.C.F.C. Felinto, E.E.S. Teotonio, In patai series, in The chemistry of metal enolates, ed. by J. Zabicky (John Wiley & Sons Ltd, New Jersey, 2009), pp. 131–184Google Scholar
  14. 14.
    K. Binnemans, Interpretation of europium (III) spectra. Coord. Chem. Rev. 295, 1–45 (2015)CrossRefGoogle Scholar
  15. 15.
    P. Leanaerts, K. Driensen, R.V. Deun, K. Binnemans, Covalent coupling of luminescent Tris(2-thenoyltrifluoroacetonato)lanthanide(III) complexes on a merrifield resin. Chem. Mater. 17(8), 2148–2154 (2005)CrossRefGoogle Scholar
  16. 16.
    S. Biju, M.L.P. Reddy, A.H. Cowley, K.V. Vasudevan, 3-Phenyl-4-acyl-5-isoxazolonate complex of Tb3+ doped into poly-bhydroxybutyrate matrix as a promising light-conversion molecular device. J. Mater. Chem. 19(29), 5179 (2009)CrossRefGoogle Scholar
  17. 17.
    J. Kai, M.C.F.C. Felinto, L.A.O. Nunes, O.L. Malta, H.F. Brito, Intermolecular energy transfer and photostability of luminescence-tuneable multicolour PMMA films doped with lanthanide-β-diketonate complexes. J. Mater. Chem. 21(11), 3796–3802 (2011)CrossRefGoogle Scholar
  18. 18.
    Q.D. Ling, D.J. Liaw, C. Zhu, D.S.H. Chan, E.T. Kang, K.G. Neoh, Polymer electronic memories: materials, devices and mechanisms. Prog. Polym. Sci. 33(10), 917–978 (2008)CrossRefGoogle Scholar
  19. 19.
    S. Jana, A.S. Khojin, W.H. Zhong, H. Chen, X. Liu, Q. Huo, Effects of gold nanoparticles and lithium hexafluorophosphate on the electrical conductivity of PMMA. Solid State Ionics 178(19–20), 1180–1186 (2007)CrossRefGoogle Scholar
  20. 20.
    H. Althues, R. Palkovits, A. Rumplecker, P. Simon, W. Sigle, M. Bredol, U. Kynast, S. Kaskel, Synthesis and characterization of transparent luminescent ZnS:Mn/PMMA nanocomposites. Chem. Mater. 18(4), 1068–1072 (2006)CrossRefGoogle Scholar
  21. 21.
    S. Li, M.S. Toprak, Y.S. Jo, J. Dobson, D.K. Kim, Bulk synthesis of transparent and homogeneous polymeric hybrid materials with ZnO quantum dots and PMMA. Adv. Mater. 19(24), 4347–4352 (2007)CrossRefGoogle Scholar
  22. 22.
    S.C. Farmer, T.E. Pattern, Photoluminescent polymer/quantum dot composite nanoparticles. Chem. Mater. 13(11), 3920–3926 (2001)CrossRefGoogle Scholar
  23. 23.
    J. Gao, C. Lü, X. Lü, Y. Du, APhen-functionalized nanoparticles-polymer fluorescent nanocomposites via ligand exchange and in situ bulk polymerization. J. Mater. Chem. 17(43), 4591–4597 (2007)CrossRefGoogle Scholar
  24. 24.
    R. Chai, H. Lian, P. Yang, Y. Fan, Z. Hou, X. Kang, J. Lin, In situ preparation and luminescent properties of LaPO4:Ce3+, Tb3+ nanoparticles and transparent LaPO4:Ce3+, Tb3+/PMMA nanocomposite. J. Colloid Interface Sci. 336(1), 46–50 (2009)CrossRefGoogle Scholar
  25. 25.
    T.A. Kovacs, M.C.F.C. Felinto, T.B. Paolini, B. Ali, L.K.O. Nakamura, E.E.S. Teotonio, H.F. Brito, O.L. Malta, Synthesis and photoluminescence properties of [Eu(dbm)3·PX] and [Eu(acac)3·PX] complexes. J. Lumin. 193, 98–105 (2018)CrossRefGoogle Scholar
  26. 26.
    C.S. Cunha, M. Köppen, H. Terraschke, G. Friedrichs, O.L. Malta, N. Stock, H.F. Brito, Luminescence tuning and single-phase white light emitters based on rare earth ions doped into a bismuth coordination network. J. Mater. Chem. C 6, 2668–12678 (2018)CrossRefGoogle Scholar
  27. 27.
    O.L. Malta, H.J. Batista, L.D. Carlos, Overlap polarizability of a chemical bond: a scale of covalency and application to lanthanide compounds. Chem. Phys. 282, 21–30 (2002)CrossRefGoogle Scholar
  28. 28.
    R.T. Moura Jr., O.L. Malta, R.L. Longo, The chemical bond overlap plasmon as a tool for quantifying covalency in solid state materials and its applications to spectroscopy. Int. J. Quantum Chem. 111, 1626–1638 (2011)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Nuclear and Energy Research Institute, IPEN/USPSao PauloBrazil
  2. 2.Institute of ChemistryUniversity of São PauloSao PauloBrazil
  3. 3.Department of ChemistryFederal University of ParaíbaJoao PessoaBrazil
  4. 4.Department of Fundamental ChemistryFederal University of PernambucoRecifeBrazil

Personalised recommendations