g-C3N4/TiO2 hybrid film on the metal surface, a cheap and efficient sunlight active photoelectrochemical anticorrosion coating

  • De Ding
  • Qiankun Hou
  • Yaoguo Su
  • Qianqian Li
  • Lei Liu
  • Jiang Jing
  • Bin LinEmail author
  • Yin ChenEmail author


A solar light active photoelectrochemical anticorrosion paint was prepared by dispersing g-C3N4 nanomaterial in 0.05 M TiO(Acac)2 solution. The paint can form uniform film on the metal surface after paralysis, which can provide effective cathodic protection for 304 SS under visible light irradiation. UV–Vis, Powder XRD, IR and EDS characterization identified that the film was composed by g-C3N4 and amorphous TiO2; After coating the g-C3N4/TiO2 film, which has a thickness around 12 um as shown by SEM, a photo-potential up to 0.20 V was observed for the metal specimen under visible light illumination (30mW/cm2) in 3% NaCl solution. The photo-potential can be accumulated with the irradiation time and held for many hours after removing the light illumination. Effective full-day cathodic protection for 304 SS can be provided by this g-C3N4/TiO2 coating.



We thanks the financial support from NSF of China (21602258), Central South University (502035002, 502044001), Talents Program of Hunan Province, Natural Science Foundation of Hunan Province (2017JJ3400). D. D. thanks the financial support from the State Grid.


  1. 1.
    K.H. Lo, C.H. Shek, J.K.L. Lai, Recent developments in stainless steels. Mater. Sci. Eng. R 65, 39–104 (2009)CrossRefGoogle Scholar
  2. 2.
    J. Schneider, M. Matsuoka, M. Takeuchi, J. Zhang, Y. Horiuchi, M. Anpo, D.W. Bahnemann, Understanding TiO2 photocatalysis: mechanisms and materials. Chem. Rev. 114, 9919–9986 (2014)CrossRefGoogle Scholar
  3. 3.
    J. Yuan, R. Fujisawa, S. Tsujikawa, Photopotentials of copper coated with TiO2 by sol-gel method. Zairyo-to-Kankyo 43, 433–440 (1994)CrossRefGoogle Scholar
  4. 4.
    Y. Ohko, S. Saitoh, T. Tatsuma, R. Fujisawa, Photoelectrochemical anticorrosion and self-cleaning effects of a TiO2 coating for type 304 stainless steel. J. Electrochem. Soc. 148, B24–B28 (2001)CrossRefGoogle Scholar
  5. 5.
    T. Imokawa, R. Fujisawa, A. Suda, Protection of 304 stainless steel with TiO2 coating. Zairyo-to-Kankyo 43, 482–486 (1994)CrossRefGoogle Scholar
  6. 6.
    J. Huang, T. Shinohara, S. Tsujikawa, Protection of carbon steel from atmospheric corrosion by TiO2 coating. Zairyo-to-Kankyo 48, 575–582 (1999)CrossRefGoogle Scholar
  7. 7.
    M.R. Hoffmann, S.T. Martin, W. Choi, D.W. Bahnemann, Environmental applications of semiconductor photocatalysis. Chem. Rev. 95, 69–96 (1995)CrossRefGoogle Scholar
  8. 8.
    H. Park, K.Y. Kim, W. Choi, A novel photoelectrochemical method of metal corrosion prevention using a TiO2 solar panel. Chem. Commun. 3, 281–282 (2001)CrossRefGoogle Scholar
  9. 9.
    H. Park, K.Y. Kim, W. Choi, Photoelectrochemical approach for metal corrosion prevention using a semiconductor photoanode. J. Phys. Chem. B 106, 4775–4781 (2002)CrossRefGoogle Scholar
  10. 10.
    M.C. Li, R.F. Wu, J.N. Shen, Photocathodic protection effect of TiO2 films for carbon steel in 3% NaCl solutions. Electrochim. Acta 50, 3401–3406 (2005)CrossRefGoogle Scholar
  11. 11.
    S.M. Ali, H.A. Al Lehaibi, Nano-structured sol-gel coatings as protective films against zinc corrosion in 0.5 M HCl solution. J. Saudi Chem. Soc. 21(4), 473–480 (2017)CrossRefGoogle Scholar
  12. 12.
    Z.S. Li, Z.S. Liu, B.L. Li, D.H. Li, C.Y. Ge, Y.P. Fang, Novel CdS nanorods/g-C3N4 nanosheets 1-D/2-D hybrid architectures: an in situ growth route and excellent visible light photoelectrochemical performances. J. Mater. Sci. 27(3), 2904–2913 (2016)Google Scholar
  13. 13.
    J. Hu, Z.C. Guan, Y. Liang, J. Zhou, Q. Liu, H. Wang, H. Zhang, R. Du, Bi2S3 modified single crystalline rutile TiO2 nanorod array films for photoelectrochemical cathodic protection. Corros. Sci. 125, 59–67 (2017)CrossRefGoogle Scholar
  14. 14.
    T. Zhang, Y. Liu, J. Liang, D. Wang, Enhancement of photoelectrochemical and photocathodic protection properties of TiO2 nanotube arrays by simple surface UV treatment. Appl. Surf. Sci. 394, 440–445 (2017)CrossRefGoogle Scholar
  15. 15.
    R. Fagan, D.W. Synnott, D.E. McCormack, S.C. Pillai, An effective method for the preparation of high temperature stable anatase TiO2 photocatalysts. Appl. Surf. Sci. 371, 447–452 (2016)CrossRefGoogle Scholar
  16. 16.
    J. Ren, B. Qian, J. Li, Z. Song, L. Hao, J. Shi, Highly efficient polypyrrole sensitized TiO2 nanotube films for photocathodic protection of Q235 carbon steel. Corros. Sci. 111, 596–601 (2016)CrossRefGoogle Scholar
  17. 17.
    T. Tatsuma, Y. Ohko, S. Saitoh, TiO2-WO3 photoelectrochemical anticorrosion system with an energy storage ability. Chem. Mater. 13, 2838–2842 (2001)CrossRefGoogle Scholar
  18. 18.
    R. Subasri, T. Shinohara, Investigations on SnO2-TiO2 composite photoelectrodes for corrosion protection. Electrochem. Commun. 5, 897–902 (2003)CrossRefGoogle Scholar
  19. 19.
    A. Boonserm, C. Kruehong, V. Seithtanabutara, A. Artnaseaw, P. Kwakhong, Photoelectrochemical response and corrosion behavior of CdS/TiO2 nanocomposite films in an aerated 0.5 M NaCl solution. Appl. Surf. Sci. 419, 933–941 (2017)CrossRefGoogle Scholar
  20. 20.
    H. Li, X. Wang, Q. Wei, B. Hou, Photocathodic protection of 304 stainless steel by Bi2S3/TiO2 nanotube films under visible light. Nanoscale Res. Lett. 12(1), 80 (2017)CrossRefGoogle Scholar
  21. 21.
    W. Cheng, C. Li, X. Ma, L. Yu, G. Liu, Effect of SiO2-doping on photogenerated cathodic protection of nano-TiO2 films on 304 stainless steel. Mater. Design 126, 155–161 (2017)CrossRefGoogle Scholar
  22. 22.
    X.F. Cheng, W.H. Leng, D.P. Liu, Electrochemical preparation and characterization of surface-fluorinated TiO2 nanoporous film and its enhanced photoelectrochemical and photocatalytic properties. J. Phys. Chem. C 112, 8725–8734 (2008)CrossRefGoogle Scholar
  23. 23.
    R. Nakamura, Y. Nakato, Mechanism for visible light responses in anodic photocurrents at N-doped TiO2 film electrodes. J. Phys. Chem. B 108, 10617–10620 (2004)CrossRefGoogle Scholar
  24. 24.
    J. Liebig, Uber einige Stickstoff-Verbindungen. Ann. Pharm. 10, 1–47 (1834)CrossRefGoogle Scholar
  25. 25.
    X. Wang, K. Maeda, A. Thomas, K. Takanabe, G. Xin, J.M. Carlsson, K. Domen, M. Antonietti, A metal-free polymeric photocatalyst for hydrogen production from water under visible light. Nat. Mater. 8, 76–80 (2009)CrossRefGoogle Scholar
  26. 26.
    Q. Qiao, W.Q. Huang, Y.Y. Li, B. Li, W.Y. Hu, W. Peng, X.X. Fan, G.F. Huang, In-situ construction of 2D direct Z-scheme g-C3N4/g-C3N4 homojunction with high photocatalytic activity. J. Mater. Sci. 53, 15882–15894 (2018)CrossRefGoogle Scholar
  27. 27.
    H.F. Qin, W.H. Lv, J.R. Bai, Y. Zhou, Y.P. Wen, Q.T. He, J.H. Tang, L.B. Wang, Q.F. Zhou, Sulfur-doped porous graphitic carbon nitride heterojunction hybrids for enhanced photocatalytic H2 evolution. J. Mater. Sci. 54, 4811–4820 (2019)CrossRefGoogle Scholar
  28. 28.
    W.-J. Ong, L.-L. Tan, Y.H. Ng, S.-T. Yong, S.-P. Chai, Graphitic carbon nitride (g-C3N4)-based photocatalysts for artificial photosynthesis and environmental remediation: are we a step closer to achieving sustainability. Chem. Rev. 116, 7159–7329 (2016)CrossRefGoogle Scholar
  29. 29.
    Y. Chen, B. Lin, W. Yu, Y. Yang, S.M. Bashir, H. Wang, K. Takanabe, H. Idriss, J.-M. Basset, Surface functionalization of g-C3N4: molecular-level design of noble-metal-free hydrogen evolution photocatalysts. Chem. Eur. J. 21, 10290–10295 (2015)CrossRefGoogle Scholar
  30. 30.
    Y. Chen, B. Lin, H. Wang, Y. Yang, H. Zhu, W. Yu, J.-M. Basset, Surface modification of g-C3N4 by hydrazine: simple way for noble-metal free hydrogen evolution catalysts. Chem. Eng. J. 286, 339–346 (2016)CrossRefGoogle Scholar
  31. 31.
    Y. Bu, Z. Chen, J. Yu, W. Li, A novel application of g-C3N4 thin film in photoelectrochemical anticorrosion. Electrochim. Acta 88, 294–300 (2013)CrossRefGoogle Scholar
  32. 32.
    Y. Bu, Z. Chen, Highly efficient photoelectrochemical anticorrosion performance of C3N4@ZnO composite with quasi-shell-core structure on 304 stainless steel. RSC Adv. 4, 45397–45406 (2014)CrossRefGoogle Scholar
  33. 33.
    Y. Bu, Z. Chen, T. Xie, W. Li, J. Ao, Fabrication of C3N4 ultrathin flakes by mechanical grind method with enhanced photocatalysis and photoelectrochemical performance. RSC Adv. 6, 47813–47819 (2016)CrossRefGoogle Scholar
  34. 34.
    X. Du, G. Zou, Z. Wang, X. Wang, A scalable chemical route to soluble acidified graphitic carbon nitride: an ideal precursor for isolated ultrathin g-C3N4 nanosheets. Nanoscale 7, 8701–8706 (2015)CrossRefGoogle Scholar
  35. 35.
    X. Zhang, X. Xie, H. Wang, J. Zhang, B. Pan, Y, Xie, Enhanced Photoresponsive ultrathin graphitic-phase C3N4 nanosheets for bioimaging. J. Am. Chem. Soc. 135, 18–21 (2013)CrossRefGoogle Scholar
  36. 36.
    K. Zhu, W. Wang, A. Meng, M. Zhao, J. Wang, M. Zhao, D. Zhang, Y. Jia, C. Xu, Z. Li, Mechanically exfoliated g-C3N4 thin nanosheets by ball milling as high performance photocatalysts. RSC Adv. 5, 56239–56243 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Shaanxi Electric Power Research InstituteXi’anChina
  2. 2.Central South University, College of Chemistry and Chemical EngineeringChangshaChina
  3. 3.School of Materials and EnergyUniversity of Electronic Science and Technology of ChinaChengduChina

Personalised recommendations