Dependence of the electrical and magnetic properties of La0.845Sr0.155MnO3:Ag0.4 ceramics on its sintering time

  • Hongjiang Li
  • Kaili Chu
  • Xingrui Pu
  • Tao Sun
  • Gang Dong
  • Yang Liu
  • Shuai Zhang
  • Xiang LiuEmail author


In this work, polycrystalline La0.845Sr0.155MnO3:Ag0.4 (LSMO:Ag) ceramics were synthesized via a combined sol–gel and solid-state method with various sintering times. The structure and unique electrical and magnetic properties of the synthesized ceramics were examined in detail. The optimized sintering temperature was determined to be 1723 K. At this temperature, by changing the sintering time from 5 to 14 h, the temperature coefficient of resistivity (TCR) and the magnetic resistance (MR) of the LSMO:Ag samples could be quickly improved. The results show that La3+ and Sr2+ ions were gradually substituted by Ag+ ions with increasing sintering time. The substitution resulted in changes to the Mn3+–O–Mn4+ pairs and a distortion of the MnO6 octahedron, which could be attributed to the double exchange (DE) and Jahn–Teller (JT) effects. At a sintering time of t = 10 h, a peak TCR value of 17.82% K−1 was attained and was achieved at room-temperature (Tk, 299.9 K). This work demonstrates an effective approach to obtain high TCR and MR values at room-temperature for uncooled manganite devices by optimizing the sintering time.



Many thanks to the support of the National Natural Science Foundation of China (Grant No. 11674135) and the Analysis and Testing Foundation of Kunming University of Science and Technology.


  1. 1.
    A.M. Haghiri-Gosnet, J.P. Renard, CMR manganites physics, thin films and devices. J. Phys. D 36(8), R127 (2003)Google Scholar
  2. 2.
    O.J. Gonzalez, G. Bistue, E. Castano, F.J. Gracia, Room temperature colossal magnetoresistance in nanocrystalline La0.67Sr0.33MnO3 sputtered thin films. J. Magn. Magn. Mater. 222, 199–206 (2000)Google Scholar
  3. 3.
    J.B. Goodenough, Colossal magnetoresistance in Ln1−xAxMnO3 perovskites. Aust. J. Phys. 52, 155–186 (1999)Google Scholar
  4. 4.
    P.K. Siwach, H.K. Singh, O.N. Srivastava, Low field magnetotransport in manganites. J. Phys. Condens. Matter 20, 273201 (2008)Google Scholar
  5. 5.
    D.G. Li, Y.T. Mai, J. Xoing, Y.H. Xiong, Z.L. Liu, C.S. Xiong, Studies on low-field and room-temperature magnetoresistance in La2/3(Ca1−xSrx)1/3MnO3 perovskites. J. Supercond. Novel Magn. 26, 719–723 (2012)Google Scholar
  6. 6.
    Y. Huang, C. Yan, Z. Wang, Z. Xu, T. Zhu, C. Liao, S. Gao, G. Xu, Enhanced magnetorresistance in La0.7Sr0.3MnO3 nanoscaled granular composites. Sci. China Ser. 43, 561–565 (2000)Google Scholar
  7. 7.
    A. Dhahri, M. Jemmali, E. Dhahri, E.K. Hlil, Electrical transport and giant magnetoresistance in La0.75Sr0.25Mn1−xCrxO3 (0.15, 0.20 and 0.25) manganite oxide. Dalton Trans. 44, 5620–5627 (2015)Google Scholar
  8. 8.
    X. Lang, H. Mo, X. Hu, H. Tian, Supercapacitor performance of perovskite La1−xSrxMnO3. Dalton Trans. 46, 13720–13730 (2017)Google Scholar
  9. 9.
    Z. Jirák, J. Hirschner, O. Kaman, K. Knížek, P. Levinský, M. Maryško, J. Hejtmánek, Structure and transport properties of La1−xSrxMnO3granular ceramics. J. Phys. D 50, 075001 (2017)Google Scholar
  10. 10.
    C. Zener, Interaction between the d shells in the transition metals. Phys. Rev. 81(1951+), 440–444 (1951)Google Scholar
  11. 11.
    J.B. Goodenough, Electronic structure of CMR manganites (invited). J. Appl. Phys. 81, 5330–5335 (1997)Google Scholar
  12. 12.
    Y.G. Tang, G.Y. Wang, G.Q. Yan, Q.X. Song, M.Y. Zhang, Z.S. Peng, Temperature stability of magnetoresistance (MR) and MR enhancement in La1−x(Sr1−yAgy)xMnO3 system. Rare Met. 32(1), 81–86 (2013)Google Scholar
  13. 13.
    T. Sun, F. Ji, Y. Liu, G. Dong, S. Zhang, Q. Chen, X. Liu, La1−xSrxMnO3:Ag0.2 (0.1 ≤ x ≤ 0.2) ceramics with large room-temperature TCR for uncooled infrared bolometers. J. Eur. Ceram. Soc. 39, 352–357 (2019)Google Scholar
  14. 14.
    S. Zhao, X.-J. Yue, Y.-Z. Yan, X. Liu, Effects of Ag addition on the structural and electrical properties of La0.67Sr0.33MnO3 ceramics. Adv. Appl. Ceram. 116, 180–184 (2016)Google Scholar
  15. 15.
    X. Liu, Y.Z. Yan, Q.M. Chen, H. Zhang, M.G. Cao, S.C. Zhang, P.X. Zhang, High TCR (temperature coefficient of resistance) La2/3Ca1/3MnO3: Agx polycrystalline composites. Appl. Surf. Sci. 283, 851–855 (2013)Google Scholar
  16. 16.
    Y. Liu, T. Sun, F. Ji, G. Dong, S. Zhang, X. Yu, Z. Li, Q. Chen, X. Liu, Influence of Ag doping on electrical and magnetic properties of La0.67Ca0.33MnO3 polycrystalline ceramics. Ceram. Int. 45, 11006–11012 (2019)Google Scholar
  17. 17.
    R. Tripathi, V.P.S. Awana, H. Kishan, G.L. Bhalla, Search for room temperature high-TCR manganite/silver composites. J. Magn. Magn. Mater. 320, L89–L92 (2008)Google Scholar
  18. 18.
    S. Zhao, X. Yue, X. Liu, Tuning room temperature T p and MR of La1−y (CayxSrx)MnO3 polycrystalline ceramics by Sr doping. Ceram. Int. 43, 4594–4598 (2017)Google Scholar
  19. 19.
    T. Sun, J. Jiang, Q. Chen, X. Liu, Improvement of room-temperature TCR and MR in polycrystalline La0.67(Ca0.27Sr0.06)MnO3 ceramics by Ag2O doping. Ceram. Int. 44, 9865–9874 (2018)Google Scholar
  20. 20.
    W. Xia, H. Wu, P. Xue, X. Zhu, Microstructural, magnetic, and optical properties of Pr-doped perovskite manganite La0.67Ca0.33MnO3 nanoparticles synthesized via sol-gel process. Nanoscale Res. Lett. 13, 135 (2018)Google Scholar
  21. 21.
    S. Zhao, X.-J. Yue, X. Liu, Influence of Sr doping on structural, electrical and magnetic properties of La0.7Ca0.3MnO3 nanoparticles. Ceram. Int. 43, 13240–13246 (2017)Google Scholar
  22. 22.
    D.S. Fan, Q. Li, Y.M. Xuan, H. Tan, J.F. Fang, Temperature-dependent infrared properties of Ca doped (La, Sr)MnO3 compositions with potential thermal control application. Appl. Therm. Eng. 51, 255–261 (2013)Google Scholar
  23. 23.
    X. Yin, X. Liu, Y. Yan, Q. Chen, Preparation of polycrystalline by sol–gel method. J. Sol-Gel Sci. Technol. 70, 361–365 (2014)Google Scholar
  24. 24.
    J. Jiang, S. Zhao, T. Sun, Q.-M. Chen, X. Liu, Influence of Ag doping on electrical and magnetic properties of La0.625(Ca0.315Sr0.06)MnO3 ceramics. Ceram. Int. 44, 3915–3920 (2018)Google Scholar
  25. 25.
    T. Sun, S. Zhao, F. Ji, X. Liu, Enhanced room-temperature MR and TCR in polycrystalline La 0.67 (Ca 0.33-xSrx)MnO3 ceramics by oxygen assisted sintering. Ceram. Int. 44, 2400–2406 (2018)Google Scholar
  26. 26.
    K. Navin, R. Kurchania, Structural, magnetic and transport properties of the La0.7Sr0.3MnO3-ZnO nanocomposites. J. Magn. Magn. Mater. 448, 228–235 (2018)Google Scholar
  27. 27.
    J. Fontcuberta, A. Seffar, S. Piñol, J.L. García-Muñoz, X. Obradors, Colossal magnetoresistance of ferromagnetic manganites: structural tuning and mechanisms. Phys. Rev. Lett. 76, 1122–1125 (1996)Google Scholar
  28. 28.
    G. Dong, T. Sun, F. Ji, Y. Liu, S. Zhang, Z. Yang, X. Yu, Y. Duan, Z. Li, X. Liu, Improved electrical transport properties of polycrystalline La0.8(Ca0.12Sr0.08)MnO3 ceramics by Ag2O doping. RSC Adv. 9, 1939–1948 (2019)Google Scholar
  29. 29.
    C. Xiong, H. Hu, Y. Xiong, Z. Zhang, H. Pi, X. Wu, L. Li, F. Wei, C. Zheng, Electrical properties and enhanced room temperature magnetoresistance in (La0.7Ca0.2Sr0.1MnO3)1 − x/Pdx composites. J. Alloy. Compd. 479, 357–362 (2009)Google Scholar
  30. 30.
    R.A. Villa-Bustamante, J.A. Jativa, R. Ospina, R.F. Londono-Menjura, J.F. Jurado, J.H. Quintero, E. Restrepo-Parra, A. Mello, Thermal treatment influence on structural, morphological and magnetic properties of La1−xSrxMnO3 powders produced by the hydrothermal technique. Contemp. Eng. Sci. 11, 4021–4039 (2018)Google Scholar
  31. 31.
    S.-A. Park, H. Lim, Y.-T. Kim, Enhanced oxygen reduction reaction activity due to electronic effects between Ag and Mn3O4 in alkaline media. ACS Catal. 5, 3995–4002 (2015)Google Scholar
  32. 32.
    Y. Xue, H. Miao, S. Sun, Q. Wang, S. Li, Z. Liu, La1-xAgxMnO3 electrocatalyst with high catalytic activity for oxygen reduction reaction in aliminium air batteries. RSC Adv. 7, 5214–5221 (2017)Google Scholar
  33. 33.
    J. Ohyama, Y. Okata, N. Watabe, M. Katagiri, A. Nakamura, H. Arikawa, K.-I. Shimizu, T. Takeguchi, W. Ueda, A. Satsuma, Oxygen reduction reaction over silver particles with various morphologies and surface chemical states. J. Power Sources 245, 998–1004 (2014)Google Scholar
  34. 34.
    W. Alshammari, D.S. Patil, S.A. Pawar, J.C. Shin, Silver nanowires-copper sulfide core/shell nanostructure for electrochemical supercapacitors. Mater. Today Chem. 5, 72–80 (2017)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Hongjiang Li
    • 1
  • Kaili Chu
    • 1
  • Xingrui Pu
    • 1
  • Tao Sun
    • 1
  • Gang Dong
    • 1
  • Yang Liu
    • 1
  • Shuai Zhang
    • 1
  • Xiang Liu
    • 1
    Email author
  1. 1.School of Material Science and EngineeringKunming University of Science and TechnologyKunmingChina

Personalised recommendations