Advertisement

Synthesis and characterization of ordered mesoporous silica containing di-ureasil hybrid/phosphotungstic acid and Eu3+

  • C. T. Cavalcante
  • C. MolinaEmail author
  • T. S. Martins
Article
  • 30 Downloads

Abstract

Multifunctional composite (MFC) di-ureasil hybrid synthesized by sol gel method containing phosphotungstic acid (PWA) and Eu3+ ions have been successfully incorporated into mesoporous silica (SBA-15) by post-synthesis method. MFC were characterized by Fourier transform-infrared spectroscopy (FTIR), small angle X-ray scattering (SAXS), nitrogen adsorption–desorption (NAI), thermogravimetric and differential thermal analysis, transmission electron microscopy (TEM) and also photoluminescence. FTIR showed that both di-ureasil and PWA were incorporated into the mesoporous silica. NAI, TEM and SAXS confirmed the incorporation of the PWA and di-ureasil into the mesoporous of SBA-15. Composites are thermal stable at about 240 °C and photoluminescence has demonstrated that Eu3+ ions were successfully entrapped and occupies local environment with low symmetry.

Notes

Acknowledgements

The authors acknowledge the financial support from Brazilian agencies: Grants 2012/02708-8, São Paulo Research Foundation (FAPESP). CAPES (Education Ministry) (23038.000776/201754) via the projects of the National Institute for Science and Technology on Organic Electronics (INEO). Authors also would like to thank Chemistry Institute, São Paulo State University – UNESP, Araraquara – SP for photoluminescent measurements. The authors also would thank Ms. A.C.F. Silveira and Prof. M.C.A. Fantini from Instituto de Física (USP) for SAXS analysis, C.M. Fukumoto, R.M. da Silva, R. Rodrigues and S. Pinheiro from CIPE-UNIFESP (Centro de Instrumentação de Pesquisa e Ensino-UNIFESP) for NAI analysis, and Sylvia Carneiro of Institute Butantan, São Paulo for TEM measurements.

References

  1. 1.
    D. Zhao, Q. Huo, J. Feng, B.F. Chmelka, G.D. Stucky, J. Am. Chem. Soc. 120, 6024–6036 (1998)CrossRefGoogle Scholar
  2. 2.
    F. Hoffmann, M. Cornelius, J. Morell, M. Froba, Angew. Chem. Int. Ed. 45, 3216–3251 (2006)CrossRefGoogle Scholar
  3. 3.
    A.M.F. Jardim, R. Bacani, N.S. Gonçalves, M.C.A. Fantini, T.S. Martins, Microporous Mesoporous Mater. 239, 235–243 (2017)CrossRefGoogle Scholar
  4. 4.
    M. Carraro, S. Gross, Materials 7(5), 3956–3989 (2014)CrossRefGoogle Scholar
  5. 5.
    P.A. Obara, V.H.V. Sarmento, S.J.L. Ribeiro, M. Nalin, C. Molina, Opt. Mater. 46, 64–69 (2015)CrossRefGoogle Scholar
  6. 6.
    R.P. Cruz, M. Nalin, S.J.L. Ribeiro, C. Molina, Opt. Mater. 66, 297–301 (2017)CrossRefGoogle Scholar
  7. 7.
    C.V.T. Rossini, C. Molina, L. Caseli, Colloids Surf A 524, 35–42 (2017)CrossRefGoogle Scholar
  8. 8.
    J. Liu, Y. Qi, D. Liu, D. Dong, D. Liu, Z. Li, J. Mater. Sci. 54, 4831–4841 (2019)CrossRefGoogle Scholar
  9. 9.
    A.M.F. Jardim, R. Bacani, F.F. Camilo, M.C.A. Fantini, T.S. Martins, Microporous Mesoporous Mater. 228, 37–44 (2016)CrossRefGoogle Scholar
  10. 10.
    D.Y. Takamori, M.A. Bizeto, M.C.A. Fantini, C.P.L. Rubinger, R. Faez, T.S. Martins, Microporous Mesoporous Mater. 274, 212–219 (2019)CrossRefGoogle Scholar
  11. 11.
    S. Salimian, A. Zadhoush, A. Mohammadi, J. Reinf. Plast. Comp. 37(7), 441–459 (2018)CrossRefGoogle Scholar
  12. 12.
    S.L. Suib, Chem. Rec. 17, 1169–1183 (2017)CrossRefGoogle Scholar
  13. 13.
    C.C.S. Pedroso, V. Junqueira, C.P.L. Rubinger, T.S. Martins, R. Faez, Synth. Met. 170, 11–18 (2013)CrossRefGoogle Scholar
  14. 14.
    X. Sheng, J. Kong, Y. Zhou, Y. Zhang, Z. Zhang, S. Zhou, Microporous Mesoporous Mater. 187, 7–13 (2014)CrossRefGoogle Scholar
  15. 15.
    R. Tan, C. Liu, N. Feng, J. Xiao, W. Zheng, A. Zheng, D. Yin, Microporous Mesoporous Mater. 158, 77–87 (2012)CrossRefGoogle Scholar
  16. 16.
    H. Wang, Y. Ma, H. Tian, N. Tang, W. Liu, Q. Wang, Y. Tang, Dalton Trans. 39, 7485–7492 (2010)CrossRefGoogle Scholar
  17. 17.
    S. Brunauer, P.H. Emmet, E. Teller, J. Am. Chem. Soc. 60, 309–319 (1938)CrossRefGoogle Scholar
  18. 18.
    E.P. Barrett, L.G. Joyner, P.P. Halenda, J. Am. Chem. Soc. 73, 373–380 (1951)CrossRefGoogle Scholar
  19. 19.
    Y. Waseda, E. Matsubara, K. Shinoda, X-ray diffraction crystallography - introduction, examples and solved problem x-ray diffraction crystallography (Springer, Berlin, 2011). ISBN 978-3-642-16634-1CrossRefGoogle Scholar
  20. 20.
    K.S.W. Sing, D.H. Everett, R.A.W. Haul, L. Moscou, R.A. Pierotti, J. Rouquérol, T. Siemieniewska, Pure Appl. Chem. 57, 603–619 (1985)CrossRefGoogle Scholar
  21. 21.
    T.R. Zhang, W. Feng, R. Lu, X.T. Zhang, M. Jin, T.J. Li, Y.Y. Zhao, J.N. Yao, Thin Solids Films. 402, 237–241 (2002)CrossRefGoogle Scholar
  22. 22.
    J. Chen, Y. Liu, D.-Q. Xiong, W. Feng, W.-M. Cai, Thin Solids Films. 516, 2864–2868 (2008)CrossRefGoogle Scholar
  23. 23.
    Bermudez V. de Zea, L.D. Carlos, L. Alcácer, Chem. Mater. 11, 569–580 (1999)CrossRefGoogle Scholar
  24. 24.
    M.C. Gonçalves, V. de Zea Bermudez, R.A. Sá Ferreira, L.D. Carlos, D. Ostrovskii, J. Rocha, Chem. Mater. 16, 2530–2543 (2004)CrossRefGoogle Scholar
  25. 25.
    J.P. Rainho, D. Ananias, Z. Lin, A. Ferreira, L.D. Carlos, J. Rocha, J. Alloys Compd. 374, 185–189 (2004)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Deparment of ChemistryFederal University of São Paulo (UNIFESP)DiademaBrazil

Personalised recommendations