Advertisement

Inkjet printed graphene as an interconnect for optoelectronic devices

  • Jay A. Desai
  • Srishti Chugh
  • Monica Michel
  • Anupama B. KaulEmail author
Article

Abstract

A comparative study of inkjet-printed graphene films (IPGFs) with mechanically exfoliated, highly crystalline graphene platelets have been conducted. Inkjet-printed graphene films were obtained using liquid-phase exfoliation of bulk graphite, while crystalline, residue-free graphene was obtained from highly-oriented-pyrolytic-graphite (HOPG) using mechanical exfoliation through a viscoelastic transfer process. Optical absorption spectroscopy was used to infer the density of platelets in the graphene-based ink dispersion. Temperature-dependent Raman spectroscopy revealed the presence of the defect D-band peak in the IPGFs, which was not observed in the HOPG-based samples at room temperature, confirming the higher crystalline quality of the latter. Full-width-half-maximum (FWHM) of the G-band was measured to be ~ 26.4 cm−1 for IPGFs compared to ~ 18.6 cm−1 for HOPG-based samples. Moreover, the D-band intensity decreased as temperature increased up to 600 °C for IPGFs, suggesting the possibility of annealing effects that may arise at these temperatures to reduce defect densities. In both HOPG-based samples and IPGF patterns, the G-band and G′-band red-shifted with increasing temperature which can be attributed to elongation of the C–C bond due to thermal expansion, resulting in the anharmonic coupling of the phonon modes. Moreover, a power study demonstrated the IPGFs even with printing passes as low as 10 passes, dissipate ~ 1.03 mW of power at 1 V, which was similar to the power dissipated in the HOPG samples (~ 1.05 mW at 1 V) suggesting good adherence of graphene platelets and high conductivity in IPGFs, which suggests that the inks are favorable for use in interconnects for device platforms in printed electronics. A natural follow-on from this work, was the use of the conductive graphene inks as an interconnect in devices, specifically WS2-based photodetectors, where prototype devices were fabricated and characterized that are also discussed here.

Notes

Acknowledgements

We greatly appreciate the support received from the Army Research Office (grant number W911NF-15-1-0425) that enabled us to pursue this work. A.B.K. also acknowledges support from the PACCAR Technology Institute at the University of North Texas.

References

  1. 1.
    S.K. Novoselov, A.K. Geim, S.V. Morozov, D.A. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Electric field effect in atomically thin carbon films. Science 306(5696), 666–669 (2004)CrossRefGoogle Scholar
  2. 2.
    A.B. Kaul, Two-dimensional layered materials: structure, properties, and prospects for device applications. J. Mater. Res. 29(3), 348–361 (2014)CrossRefGoogle Scholar
  3. 3.
    F. Torrisi, T. Hasan, W. Wu, Z. Sun, A. Lombardo, T.S. Kulmala, G.-W. Hsieh, S. Jung, F. Bonaccorso, P.J. Paul, D. Chu, A.C. Ferrari, Inkjet-printed graphene electronics. ACS Nano 6(4), 2992–3006 (2012)CrossRefGoogle Scholar
  4. 4.
    K.-Y. Shin, J.-Y. Hong, J. Jang, Flexible and transparent graphene films as acoustic actuator electrodes using inkjet printing. Chem. Commun. 47(30), 8527–8529 (2011)CrossRefGoogle Scholar
  5. 5.
    Y. Xu, I. Hennig, D. Freyberg, A.J. Strudwick, M.G. Schwab, T. Weitz, K.C.-P. Cha, Inkjet-printed energy storage device using graphene/polyaniline inks. J. Power Sources. 248, 483–488 (2014)CrossRefGoogle Scholar
  6. 6.
    J. Li, F. Ye, S. Vaziri, M. Muhammed, M.C. Lemme, M. Östling, Efficient inkjet printing of graphene. Adv. Mater. 25(29), 3985–3992 (2013)CrossRefGoogle Scholar
  7. 7.
    K.S. Novoselov, D. Jiang, F. Schedin, T.J. Booth, V.V. Khotkevich, S.V. Morozov, A.K. Geim, Two-dimensional atomic crystals. Proc. Natl. Acad. Sci. 102(30), 10451–10453 (2005)CrossRefGoogle Scholar
  8. 8.
    C. Berger, Z. Song, X. Li, X. Wu, N. Brown, C. Naud, D. Mayou, T. Li, J. Hass, A.N. Marchenkov, E.H. Conrad, P.N. First, W.A. de Heer, Electronic confinement and coherence in patterned epitaxial graphene. Science 312(5777), 1191–1196 (2006)CrossRefGoogle Scholar
  9. 9.
    A.H. Becerril, J. Mao, Z. Liu, R.M. Stoltenberg, Z. Bao, Y. Chen, Evaluation of solution-processed reduced graphene oxide films as transparent conductors. ACS Nano 2(3), 463–470 (2008)CrossRefGoogle Scholar
  10. 10.
    J.N. Coleman, Liquid exfoliation of defect-free graphene. Acc. Chem. Res. 46(1), 14–22 (2012)CrossRefGoogle Scholar
  11. 11.
    H.J. Park, J. Meyer, S. Roth, V. Skákalová, Growth and properties of few-layer graphene prepared by chemical vapor deposition. Carbon 48(4), 1088–1094 (2010)CrossRefGoogle Scholar
  12. 12.
    C. Soldano, A. Mahmood, E. Dujardin, Production, properties and potential of graphene. Carbon 48(8), 2127–2150 (2010)CrossRefGoogle Scholar
  13. 13.
    X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S.K. Banerjee, L. Colombo, R.S. Ruoff, Large-area synthesis of high-quality and uniform graphene films on copper foils. Science 324(5932), 1312–1314 (2009)CrossRefGoogle Scholar
  14. 14.
    M. Qian, Y.S. Zhou, Y. Gao, J.B. Park, T. Feng, S.M. Huang, Z. Sun, L. Jiang, Y.F. Lu, Formation of graphene sheets through laser exfoliation of highly ordered pyrolytic graphite. Appl. Phys. Lett. 98(17), 173108 (2011)CrossRefGoogle Scholar
  15. 15.
    B. Jayasena, S. Subbiah, A novel mechanical cleavage method for synthesizing few-layer graphenes. Nanoscale Res. Lett. 6(1), 95 (2011)CrossRefGoogle Scholar
  16. 16.
    A.S. Milev, N.H. Tran, G.S.K. Kannangara, M.A. Wilson, Unoccupied electronic structure of ball-milled graphite. Phys. Chem. Chem. Phys. 12(25), 6685–6691 (2010)CrossRefGoogle Scholar
  17. 17.
    A. Castellanos-Gomez, M. Buscema, R. Molenaar, V. Singh, L. Janssen, H.S.J. Van Der Zant, G.A. Steele, Deterministic transfer of two-dimensional materials by all-dry viscoelastic stamping. 2D Mater. 1(1), 011002 (2014)CrossRefGoogle Scholar
  18. 18.
    V. Nicolosi, M. Chhowalla, M.G. Kanatzidis, M.S. Strano, J.N. Coleman, Liquid exfoliation of layered materials. Science 340(6139), 1226419 (2013)CrossRefGoogle Scholar
  19. 19.
    M. Singh, H.M. Haverinen, P. Dhagat, G.E. Jabbour, Inkjet printing—process and its applications. Adv. Mater. 22(6), 673–685 (2010)CrossRefGoogle Scholar
  20. 20.
    B. Derby, Inkjet printing of functional and structural materials: fluid property requirements, feature stability, and resolution. Annu. Rev. Mater. Res. 40, 395–414 (2010)CrossRefGoogle Scholar
  21. 21.
    J. Perelaer, P.J. Smith, D. Mager, D. Soltman, S.K. Volkman, V. Subramanian, J.G. Korvink, U.S. Schubert, Printed electronics: the challenges involved in printing devices, interconnects, and contacts based on inorganic materials. J. Mater. Chem. 20(39), 8446–8453 (2010)CrossRefGoogle Scholar
  22. 22.
    M. Michel, J.A. Desai, A. Delgado, C. Biswas, A.B. Kaul, Optimization of fluid characteristics of 2D materials for inkjet printing. MRS Adv. 1(30), 2199–2206 (2016)CrossRefGoogle Scholar
  23. 23.
    A. Capasso, A.E. Del Rio Castillo, H. Sun, A. Ansaldo, V. Pellegrini, F. Bonaccorso, Ink-jet printing of graphene for flexible electronics: an environmentally-friendly approach. Solid State Commun. 224, 53–63 (2015)CrossRefGoogle Scholar
  24. 24.
    E.B. Secor, P.L. Prabhumirashi, K. Puntambekar, M.L. Geier, M.C. Hersam, Inkjet printing of high conductivity, flexible graphene patterns. J Phys. Chem. Lett. 4(8), 1347–1351 (2013)CrossRefGoogle Scholar
  25. 25.
    L.T. Le, M.H. Ervin, H. Qiu, B.E. Fuchs, W.Y. Lee, Graphene supercapacitor electrodes fabricated by inkjet printing and thermal reduction of graphene oxide. Electrochem. Commun. 13(4), 355–358 (2011)CrossRefGoogle Scholar
  26. 26.
    C.-L. Lee, C.-H. Chen, C.-W. Chen, Graphene nanosheets as ink particles for inkjet printing on flexible board. Chem. Eng. J. 230, 296–302 (2013)CrossRefGoogle Scholar
  27. 27.
    R. Giardi, S. Porro, A. Chiolerio, E. Celasco, M. Sangermano, Inkjet printed acrylic formulations based on UV-reduced graphene oxide nanocomposites. J. Mater. Sci. 48(3), 1249–1255 (2013)CrossRefGoogle Scholar
  28. 28.
    M.H. Ervin, L.T. Le, W.Y. Lee, Inkjet-printed flexible graphene-based supercapacitor. Electrochim. Acta 147, 610–616 (2014)CrossRefGoogle Scholar
  29. 29.
    D.J. Finn, M. Lotya, G. Cunningham, R.J. Smith, D. McCloskey, J.F. Donegan, J.N. Coleman, Inkjet deposition of liquid-exfoliated graphene and MoS2 nanosheets for printed device applications. J. Mater. Chem. C 2(5), 925–932 (2014)CrossRefGoogle Scholar
  30. 30.
    J. Li, M.C. Lemme, M. Östling, Inkjet printing of 2D layered materials. ChemPhysChem 15(16), 3427–3434 (2014)CrossRefGoogle Scholar
  31. 31.
    L. Huang, Y. Huang, J. Liang, X. Wan, Y. Chen, Graphene-based conducting inks for direct inkjet printing of flexible conductive patterns and their applications in electric circuits and chemical sensors. Nano Res. 4(7), 675–684 (2011)CrossRefGoogle Scholar
  32. 32.
    D. Kim, S. Jeong, B.K. Park, J. Moon, Direct writing of silver conductive patterns: improvement of film morphology and conductance by controlling solvent compositions. Appl. Phys. Lett. 89(26), 264101 (2006)CrossRefGoogle Scholar
  33. 33.
    S. Gayathri, P. Jayabal, M. Kottaisamy, V. Ramakrishnan, Synthesis of few layer graphene by direct exfoliation of graphite and a Raman spectroscopic study. AIP Adv. 4(2), 027116 (2014)CrossRefGoogle Scholar
  34. 34.
    L. Bokobza, J.-L. Bruneel, M. Couzi, Raman spectroscopy as a tool for the analysis of carbon-based materials (highly oriented pyrolytic graphite, multilayer graphene and multiwall carbon nanotubes) and of some of their elastomeric composites. Vib. Spectrosc. 74, 57–63 (2014)CrossRefGoogle Scholar
  35. 35.
    A.C. Ferrari, Raman spectroscopy of graphene and graphite: disorder, electron–phonon coupling, doping and nonadiabatic effects. Solid State Commun. 143(1–2), 47–57 (2007)CrossRefGoogle Scholar
  36. 36.
    A.C. Ferrari, J.C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K.S. Novoselov, S. Roth, A.K. Geim, Raman spectrum of graphene and graphene layers. Phys. Rev. Lett. 97(18), 187401 (2006)CrossRefGoogle Scholar
  37. 37.
    L.M. Malard, M.A. Pimenta, G. Dresselhaus, M.S. Dresselhaus, Raman spectroscopy in graphene. Phys. Rep. 473(5–6), 51–87 (2009)CrossRefGoogle Scholar
  38. 38.
    R.P. Vidano, D.B. Fischbach, L.J. Willis, T.M. Loehr, Observation of Raman band shifting with excitation wavelength for carbons and graphites. Solid State Commun. 39(2), 341–344 (1981)CrossRefGoogle Scholar
  39. 39.
    L.G. Cançado, A. Jorio, E.H.M. Ferreira, F. Stavale, C.A. Achete, R.B. Capaz, M.V.O. Moutinho, A. Lombardo, T.S. Kulmala, A.C. Ferrari, Quantifying defects in graphene via Raman spectroscopy at different excitation energies. Nano Lett. 11(8), 3190–3196 (2011)CrossRefGoogle Scholar
  40. 40.
    A. Eckmann, A. Felten, A. Mishchenko, L. Britnell, R. Krupke, K.S. Novoselov, C. Casiraghi, Probing the nature of defects in graphene by Raman spectroscopy. Nano Lett. 12(8), 3925–3930 (2012)CrossRefGoogle Scholar
  41. 41.
    S. Tian, Y. Yang, Z. Liu, C. Wang, R. Pan, C. Gu, J. Li, Temperature-dependent Raman investigation on suspended graphene: contribution from thermal expansion coefficient mismatch between graphene and substrate. Carbon 104, 27–32 (2016)CrossRefGoogle Scholar
  42. 42.
    W. Wang, Q. Peng, Y. Dai, Z. Qian, S. Liu, Temperature dependence of Raman spectra of graphene on copper foil substrate. J. Mater. Sci. Mater. Electron. 27(4), 3888–3893 (2016)CrossRefGoogle Scholar
  43. 43.
    I. Calizo, A.A. Balandin, W. Bao, F. Miao, C.N. Lau, Temperature dependence of the Raman spectra of graphene and graphene multilayers. Nano Lett. 7(9), 2645–2649 (2007)CrossRefGoogle Scholar
  44. 44.
    N. Hosoya, Y. Akaho, M. Inoue, S. Sahoo, M. Tachibana, Temperature dependence of the Raman spectra of polycrystalline graphene grown by chemical vapor deposition. Appl. Phys. Lett. 105(2), 023108 (2014)CrossRefGoogle Scholar
  45. 45.
    M. Michel, J.A. Desai, C. Biswas, A.B. Kaul, Engineering chemically exfoliated dispersions of two-dimensional graphite and molybdenum disulphide for ink-jet printing. Nanotechnology 27(48), 485602 (2016)CrossRefGoogle Scholar
  46. 46.
    Y. Seekaew, S. Lokavee, D. Phokharatkul, A. Wisitsoraat, T. Kerdcharoen, C. Wongchoosuk, Low-cost and flexible printed graphene—PEDOT: PSS gas sensor for ammonia detection. Org. Electron. 15(11), 2971–2981 (2014)CrossRefGoogle Scholar
  47. 47.
    D. Kong, L.T. Le, Y. Li, J.L. Zunino, W. Lee, Temperature-dependent electrical properties of graphene inkjet-printed on flexible materials. Langmuir 28(37), 13467–13472 (2012)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Metallurgical, Materials and Biomedical EngineeringUniversity of Texas at El PasoEl PasoUSA
  2. 2.Department of Material Science and EngineeringPACCAR Technology InstituteDentonUSA
  3. 3.Department of Electrical EngineeringUniversity of North TexasDentonUSA
  4. 4.Department of Electrical EngineeringUniversity of Texas at El PasoEl PasoUSA

Personalised recommendations