Enhanced-photoreduction deposition of Ag over sono-dispersed C3N4-Clinoptilolite used as nanophotocatalyst for efficient photocatalytic degradation of tetracycline antibiotic under simulated solar-light

  • Maryam Jodeyri
  • Mohammad HaghighiEmail author
  • Maryam Shabani


Ag/C3N4-Clinoptilolite nano-photocatalyst with a high activity was synthesized by ultrasound energy and employed in the photocatalytic removal of the tetracycline from aqueous solutions. XRD, FESEM, EDX, BET and FTIR analyses revealed that C3N4-Clinoptilolite was successfully synthesized with efficient dispersion of Ag nanoparticles. DRS analysis indicated that the loading of Ag nanoparticles increased the absorption intensity in the simulated solar-light region due to of the surface plasmon resonance and decreased the band gap which made the composite to utilize more solar spectrum. Therefore, the Ag/C3N4-Clinoptilolite nano-photocatalyst displayed an excellent photocatalytic activity under simulated solar light irradiation. Approximately 90% of the antibiotic tetracycline in aqueous solution was decomposed after 3 h by this nano-photocatalyst, while only 73%, 68%, 58.5% of the pollutant was removed using Ag–C3N4, C3N4-Clinoptilolite, and C3N4, respectively. The effects of pH, the loading of nano-photocatalyst and tetracycline concentration on photodegradation efficiency were evaluated. Also, the appropriate stability after 4 runs observed for Ag/C3N4-Clinoptilolite nano-photocatalyst.



The authors gratefully acknowledge Iran National Science Foundation (Grant No. 97/S/5323) and Sahand University of Technology (Grant No. 3013679) for complementary financial supports.


  1. 1.
    S.L.J. Hu, J. Hazard. Mater. 318, 134–144 (2016)CrossRefGoogle Scholar
  2. 2.
    M. Shabani, M. Haghighi, D. Kahforoushan, A. Haghighi, Sol. Energy Mater. Sol. Cells 193, 335–350 (2019)CrossRefGoogle Scholar
  3. 3.
    H. Wang, X. Yang, J. Zi, M. Zhou, Z. Ye, J. Li, Q. Guan, P. Lv, P. Huo, Y. Yan, J. Ind. Eng. Chem. 35, 83–92 (2016)CrossRefGoogle Scholar
  4. 4.
    M. Shabani, M. Haghighi, D. Kahforoushan, A. Haghighi, J. Cleaner Prod. 207, 444–457 (2019)CrossRefGoogle Scholar
  5. 5.
    F. Saadati, N. Keramati, M.M. Ghazi, Crit. Rev. Environ. Sci. Technol. 1, 26 (2016)Google Scholar
  6. 6.
    S. Heidari, M. Haghighi, M. Shabani, Ultrason. Sonochem. 43, 61–72 (2018)CrossRefGoogle Scholar
  7. 7.
    H. Motlagh, M. Haghighi, M. Shabani, Solar Energy 180, 25–38 (2019)CrossRefGoogle Scholar
  8. 8.
    S. Ahmed, M.G. Rasul, W.N. Martens, R. Brown, M.A. Hashib, Desalination 261, 3–18 (2010)CrossRefGoogle Scholar
  9. 9.
    A. Nezamzadeh-Ejhieh, A. Shirzadi, Chemosphere 107, 136–144 (2014)CrossRefGoogle Scholar
  10. 10.
    M. Shabani, M. Haghighi, D. Kahforoushan, S. Heidari, J Taiwan Inst. Chem. Eng. 96, 243–255 (2019)CrossRefGoogle Scholar
  11. 11.
    A. Ghalajkhani, M. Haghighi, M. Shabani, J. Photochem. Photobiol. A 359, 145–156 (2018)CrossRefGoogle Scholar
  12. 12.
    M. Azami, M. Haghighi, S. Allahyari, Ultrasonics Sonochemistry. 40(Part A), 505–516 (2018)CrossRefGoogle Scholar
  13. 13.
    M. Moradi, M. Haghighi, S. Allahyari, Process Saf. Environ. Prot. 107, 414–427 (2017)CrossRefGoogle Scholar
  14. 14.
    S.G. Fard, M. Haghighi, M. Shabani, Appl. Catal. B 248, 320–331 (2019)CrossRefGoogle Scholar
  15. 15.
    Y.K. Abdel-Monem, J. Mater. Sci.: Mater. Electron. 27, 5723–5728 (2016)Google Scholar
  16. 16.
    A. Bumajdad, M. Madkour, Y.K. Abdel-Moneam, M. El-Kemary, J. Mater. Sci. 49, 1743–1754 (2014)CrossRefGoogle Scholar
  17. 17.
    X. Zhang, X. Xie, H. Wang, J. Zhang, B. Pan, Y. Xie, J. Am. Chem. Soc. 135, 18–21 (2013)CrossRefGoogle Scholar
  18. 18.
    M. Madkour, Y.K. Abdel-Monem, F.A. Sagheer, Indus. Eng. Chem. Res. 55, 12733–12741 (2016)CrossRefGoogle Scholar
  19. 19.
    Y.K. Monem, S.M. Emam, H.M.Y. Okda, J. Mater. Sci. 28, 2923–2934 (2017)Google Scholar
  20. 20.
    X. Wang, K. Maeda, A. Thomas, K. Takanabe, G. Xin, J.M. Carlsson, K. Domen, M. Antonietti, Nat. Mater. 8, 76–80 (2009)CrossRefGoogle Scholar
  21. 21.
    Y. Zhang, J. Liu, G. Wu, W. Chen, Nanoscale 4, 5300–5303 (2012)CrossRefGoogle Scholar
  22. 22.
    S.C. Yan, Z.S. Li, Z.G. Zou, Langmuir 25, 10397–10401 (2009)CrossRefGoogle Scholar
  23. 23.
    G. Zhang, J. Zhang, M. Zhanga, X. Wang, J. Mater. Chem. 22, 8083–8091 (2012)CrossRefGoogle Scholar
  24. 24.
    F. Dong, L. Wu, Y. Sun, M. Fu, Z. Wu, S.C. Lee, J. Mater. Chem. 21, 15171–15174 (2011)CrossRefGoogle Scholar
  25. 25.
    S. Ma, S. Zhan, Y. Jia, Q. Shi, Q. Zhou, Appl. Catal. B 186, 77–87 (2016)CrossRefGoogle Scholar
  26. 26.
    K. Wang, Q. Li, B. Liu, B. Cheng, W. Ho, J. Yu, Appl. Catal. B 176–177, 44–52 (2015)CrossRefGoogle Scholar
  27. 27.
    Z. Zhang, J. Huang, M. Zhang, Q. Yuan, B. Dong, Appl. Catal. B 163, 298–305 (2015)CrossRefGoogle Scholar
  28. 28.
    Q. Chen, S. Wu, Y. Xin, Chem. Eng. J. 302, 377–387 (2016)CrossRefGoogle Scholar
  29. 29.
    L. Ge, C. Han, Y. Li, Appl. Catal. A 409–410, 215–222 (2011)CrossRefGoogle Scholar
  30. 30.
    D.B. Ingram, P. Christopher, J.L. Bauer, S. Linic, ACS Catalysis 1, 1441–1447 (2011)CrossRefGoogle Scholar
  31. 31.
    Y. Chen, W. Huang, D. He, Y. Situ, H. Huang, ACS Appl. Mater. Iterfaces 6, 14405–14414 (2014)CrossRefGoogle Scholar
  32. 32.
    A.K. Aboul-Gheit, S.M. Ahmed, S.A. Hanafy, J. Mol. Catal. A: Chem. 288, 52–57 (2008)CrossRefGoogle Scholar
  33. 33.
    Y. Xu, C.H. Langford, J. Phys. Chem. 99, 11501–11507 (1995)CrossRefGoogle Scholar
  34. 34.
    F. Li, Y. Jiang, L. Yu, Z. Yang, T. Hou, S. Sun, Appl. Surf. Sci. 252, 1410–1416 (2005)CrossRefGoogle Scholar
  35. 35.
    N. Rajic, D. Stojakovic, M. Jovanovic, N.Z. Logar, M. Mazaj, V. Kauci, Appl. Surf. Sci. 257, 1524–1532 (2010)CrossRefGoogle Scholar
  36. 36.
    F. Rahmani, M. Haghighi, S. Mahboob, Ultrason. Sonochem. 33, 150–163 (2016)CrossRefGoogle Scholar
  37. 37.
    C. Hou, Q. Zhang, Y. Li, H. Wang, J. Hazard. Mater. 205–206, 229–235 (2012)CrossRefGoogle Scholar
  38. 38.
    M.D. Abramoff, P.J. Magalhaes, S.J. Ram, Biophotonics Int. 11, 36–42 (2004)Google Scholar
  39. 39.
    B. Halling-Sørensen, G. Sengeløv, J. Tjørnelund, Arch. Environ. Contam. Toxicol. 42, 263–271 (2002)CrossRefGoogle Scholar
  40. 40.
    T. Sun, H.-Y. Jiang, C.-C. Ma, F. Mao, B. Xue, Catal. Commun. 79, 45–48 (2016)CrossRefGoogle Scholar
  41. 41.
    Z. Jamalzadeh, M. Haghighi, N. Asgari, J. Ind. Eng. Chem. 20, 2735–2744 (2014)CrossRefGoogle Scholar
  42. 42.
    F. Rahmani, M. Haghighi, M. Amini, J. Ind. Eng. Chem. 31, 142–155 (2015)CrossRefGoogle Scholar
  43. 43.
    W. Chen, Z. Chen, T. Liu, Z. Jia, X. Liu, J. Environ. Chem. Eng. 2, 1889–1897 (2014)CrossRefGoogle Scholar
  44. 44.
    F. Cakicioglu-Ozkan, S. Ulku, Microporous Mesoporous Mater. 77, 47–53 (2005)CrossRefGoogle Scholar
  45. 45.
    M. Hosseini, M. Haghighi, P. Margan, H. Ajamein, Process Saf. Environ. Prot. 106, 309–318 (2017)CrossRefGoogle Scholar
  46. 46.
    M. Ahmadi, M. Haghighi, D. Kahforoushan, Process Saf. Environ. Prot. 106, 294–308 (2017)CrossRefGoogle Scholar
  47. 47.
    N. Asgari, M. Haghighi, S. Shafiei, J. Chem. Technol. Biotechnol. 88, 690–703 (2013)CrossRefGoogle Scholar
  48. 48.
    N. Asgari, M. Haghighi, S. Shafiei, Environ. Progress Sustain. Energy 32, 587–597 (2013)CrossRefGoogle Scholar
  49. 49.
    S. Aghamohammadi, M. Haghighi, Chem. Eng. J. 264, 359–375 (2015)CrossRefGoogle Scholar
  50. 50.
    M. Ostroumov, P. Corona-Chávez, Revista Mexicana de Ciencias Geologicas 20, 133–138 (2003)Google Scholar
  51. 51.
    M.T.B. Varela, S.M. Ramírez, I. Ereña, M. Gener, P. Carmona, Appl. Clay Sci. 33, 149–159 (2006)CrossRefGoogle Scholar
  52. 52.
    S. Aghamohammadi, M. Haghighi, M. Charghand, Mater. Res. Bull. 50, 462–475 (2014)CrossRefGoogle Scholar
  53. 53.
    J. Lv, K. Dai, J. Zhang, L. Geng, C. Liang, Q. Liu, G. Zhu, C. Chen, Appl. Surf. Sci. 358, 377–384 (2015)CrossRefGoogle Scholar
  54. 54.
    Y. Yang, Y. Guo, F. Liu, X. Yuan, Y. Guo, S. Zhang, W. Guo, M. Huo, Appl. Catal. B 142–143, 828–837 (2013)CrossRefGoogle Scholar
  55. 55.
    W. Zhang, L. Zhou, H. Deng, J. Mol. Catal. A: Chem. 423, 270–276 (2016)CrossRefGoogle Scholar
  56. 56.
    M. Shabani, M. Haghighi, D. Kahforoushan, Catal. Sci. Technol. 8, 4052–4069 (2018)CrossRefGoogle Scholar
  57. 57.
    X. Bai, R. Zong, C. Li, D. Liu, Y. Liu, Y. Zhu, Appl. Catal. B 147, 82–91 (2014)CrossRefGoogle Scholar
  58. 58.
    Y. Bessekhouad, D. Robert, J.-V. Weber, N. Chaoui, J. Photochem. Photobiol., A 167, 49–57 (2004)CrossRefGoogle Scholar
  59. 59.
    J. Chen, S. Shen, P. Guo, M. Wang, J. Su, D. Zhao, L. Guo, J. Mater. Res. 29, 64–70 (2014)CrossRefGoogle Scholar
  60. 60.
    J. Li, W. Fang, C. Yu, W. Zhou, L. Zhu, Y. Xie A. Appl. Surf. Sci. 358, 46–56 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Chemical Engineering FacultySahand University of TechnologyTabrizIran
  2. 2.Reactor and Catalysis Research Center (RCRC)Sahand University of TechnologyTabrizIran

Personalised recommendations