Advertisement

The effect of deposition time on the structural, morphological and H2S gas sensing properties of the V2O5 nanostructures deposited by hydrothermal method

  • M. Ali YıldırımEmail author
  • Sümeyra Tuna Yıldırım
  • Ali Orkun Çağirtekin
  • Mert Karademir
  • Irmak Karaduman Er
  • Aysun Coşkun
  • Aytunç Ateş
  • Selim Acar
Article
  • 30 Downloads

Abstract

V2O5 nanostructures were successfully deposited on glass substrates by hydrothermal method at 180 °C for the deposition times of 4, 6, 8, 10 h. The effect of deposition time on the structural, morphological, compositional and H2S gas sensing properties of the nanostructures were investigated by XRD, SEM, EDAX and gas measurement system, respectively. The XRD and SEM studies indicated that the nanostructures had polycrystalline nature with monoclinic phase of V2O5 and the structural and morphological properties of the nanostructures depended on the deposition time. The sensing measurements of the sensors were made based on temperature and gas concentration. The sensors exhibited high responses towards 50 ppm H2S gas concentration at operating temperature of 145 °C. In addition, the sensors showed acceptable responses at temperatures below the operating temperature of 50 °C. It was seen that the gas sensing properties of the nanostructure deposited for 6 h deposition time were better than others.

Notes

Acknowledgements

The authors would like to acknowledge the financial support given by the TUBİTAK Foundation, Project No: 216M387.

References

  1. 1.
    B.H. Kim, A. Kim, S.Y. Oh, S.S. Bae, Y.J. Yun, H.Y. Yu, Energy gap modulation in V2O5 nanowires by gas adsorption. Appl. Phys. Lett. 93, 233101 (2008)CrossRefGoogle Scholar
  2. 2.
    N.M. Abd-Alghafour, N.M. Ahmed, Z. Hassan, Fabrication and characterization of V2O5 nanorods based metal–semiconductor–metal photodetector. Sens. Actuators A 250, 250–257 (2016)CrossRefGoogle Scholar
  3. 3.
    A. Dhayal Raj, T. Pazhanivel, P. Suresh Kumar, D. Mangalaraj, D. Nataraj, N. Ponpandian, Self-assembled V2O5 nanorods for gas sensors. Curr. Appl. Phys. 10, 531–537 (2010)CrossRefGoogle Scholar
  4. 4.
    K. Schneider, M. Lubecka, A. Czapla, V2O5 thin films for gas sensor applications. Sens. Actuators B 236, 970–977 (2016)CrossRefGoogle Scholar
  5. 5.
    N. Singh, A. Umar, N. Singh, H. Fouad, O.Y. Alothman, F.Z. Haque, Highly sensitive optical ammonia gas sensor based on Sn doped V2O5 Nanoparticles. Mater. Res. Bull. 108, 266–274 (2018)CrossRefGoogle Scholar
  6. 6.
    Y. Vijayakumar, G.K. Mani, D. Ponnusamy, P. Shankar, A.J. Kulandaisamy, K. Tsuchiya, J.B.B. Rayappan, M.V.R. Reddy, V2O5 nanofibers: potential contestant for high performance xylene sensor. J. Alloy. Compd. 731, 805–812 (2018)CrossRefGoogle Scholar
  7. 7.
    M. Zeng, H. Yin, K. Yu, Synthesis of V2O5 nanostructures with various morphologies and their electrochemical and field-emission properties. Chem. Eng. J. 188, 64–70 (2012)CrossRefGoogle Scholar
  8. 8.
    M.M. Margoni, S. Mathuri, K. Ramamurthi, R.R. Babu, V. Ganesh, K. Sethuraman, Hydrothermally grown nano and microstructured V2O5 thin films for electrochromic application. Appl. Surf. Sci. 449, 193–202 (2018)CrossRefGoogle Scholar
  9. 9.
    A. Mirzaei, S.S. Kim, H.W. Kim, Resistance-based H2S gas sensors using metal oxide nanostructures: a review of recent advances. J. Hazard. Mater. 357, 314–331 (2018)CrossRefGoogle Scholar
  10. 10.
    M.N. Hughes, M.N. Centelles, K.P. Moore, Making and working with hydrogen sulfide the chemistry and generation of hydrogen sulfide in vitro and its measurement in vivo: a review. Free Radic. Biol. Med. 47, 1346–1353 (2009)CrossRefGoogle Scholar
  11. 11.
    A.F.S. Abu-Hani, Y.E. Greish, S.T. Mahmoud, F. Awwad, A.I. Ayesh, Low-temperature and fast response H2S gas sensor using semiconducting chitosan film. Sens. Actuators B 253, 677–684 (2017)CrossRefGoogle Scholar
  12. 12.
    I. Karaduman, E. Er, H. Çelikkan, S. Acar, A new generation gas sensing material based on high-quality graphene. Sens. Actuators B 221, 1188–1194 (2015)CrossRefGoogle Scholar
  13. 13.
    I. Karaduman, M.A. Yıldırım, S.T. Yıldırım, A. Ateş, Y.A. Özdemir, S. Acar, The effect of different doping elements on the CO gas sensing properties of ZnO nanostructures. J. Mater. Sci.: Mater. Electron. 28, 18154–18163 (2017)Google Scholar
  14. 14.
    D. Vernardou, M. Apostolopoulou, D. Louloudakis, N. Katsarakis, E. Koudoumas, Hydrothermally grown β-V2O5 electrode at 95 & #xB0;C. J. Colloid Interface Sci. 424, 1–6 (2014)CrossRefGoogle Scholar
  15. 15.
    H. Chen, S.Y. Ma, H.Y. Jiao, G.J. Yang, X.L. Xu, T.T. Wang, X.H. Jiang, Z.Y. Zhang, The effect microstructure on the gas properties of Ag doped zinc oxide sensors: spheres and sea-urchin-like nanostructures. J. Alloy Compd. 687, 342–351 (2016)CrossRefGoogle Scholar
  16. 16.
    T. Çorlu, I. Karaduman, M.A. Yıldırım, A. Ateş, S. Acar, Effect of doping materials on the low-level NO gas sensing properties of ZnO thin films. J. Electron. Mater. 46(7), 3995–4002 (2017)CrossRefGoogle Scholar
  17. 17.
    A. Afzal, N. Cioffi, L. Sabbatini, L. Torsi, NOx sensors based on semiconducting metal oxide nanostructures: progress and perspectives. Sens. Actuators B 171–172, 25–42 (2012)CrossRefGoogle Scholar
  18. 18.
    L.-Y. Hong, H.-W. Ke, C.-E. Tsai, H.-N. Lin, Low concentration NO gas sensing under ambient environment using Cu2O nanoparticle modified ZnO nanowires. Mater. Lett. 185, 243–246 (2016)CrossRefGoogle Scholar
  19. 19.
    A. Katoch, S.-W. Choi, J.-H. Kim, J.H. Lee, J.-S. Lee, S.S. Kim, Importance of the nanograin size on the H2S-sensing properties of ZnO-CuO composite nanofibers. Sens. Actuators B 214, 111–116 (2015)CrossRefGoogle Scholar
  20. 20.
    Z. Li, Y. Huanga, S. Zhang, W. Chen, Z. Kuang, D. Ao, W. Liu, Y. Fu, A fast response & recovery H2S gas sensor based on α-Fe2O3 nanoparticles with ppb level detection limit. J. Hazard. Mater. 300, 167–174 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • M. Ali Yıldırım
    • 1
    Email author
  • Sümeyra Tuna Yıldırım
    • 2
  • Ali Orkun Çağirtekin
    • 3
  • Mert Karademir
    • 1
  • Irmak Karaduman Er
    • 4
  • Aysun Coşkun
    • 5
  • Aytunç Ateş
    • 6
  • Selim Acar
    • 3
  1. 1.Department of Electrical and Electronic Engineering, Engineering FacultyErzincan Binali Yıldırım UniversityErzincanTurkey
  2. 2.Department of Analytical Chemistry, Pharmacy FacultyErzincan Binali Yıldırım UniversityErzincanTurkey
  3. 3.Department of Physics, Science FacultyGazi UniversityAnkaraTurkey
  4. 4.Department of Medical Services and Techniques, Eldivan Medical Services Vocational SchoolÇankırı Karatekin UniversityÇankırıTurkey
  5. 5.Department of Computer Engineering, Technology FacultyGazi UniversityAnkaraTurkey
  6. 6.Department of Material Engineering, Engineering and Natural Sciences FacultyAnkara Yıldırım Beyazıt UniversityAnkaraTurkey

Personalised recommendations