Advertisement

Controlled synthesis of In-doped ZnO: the effect of indium doping concentration

  • Endris Taju SeidEmail author
  • Francis B. Dejene
Article
  • 44 Downloads

Abstract

Three dimensional (3D) indium doped zinc oxide (In:ZnO) nanostructures are produced with the simple and reliable refluxed sol–gel technique. The influence of indium (In) doping concentration was studied by varying the quantity of In-dopant during synthesis. The morphologies of the produced samples observed using FE-SEM and TEM are nanoplates, flower and prism like. The hierarchical nanoprisms are aggregated for the evolution of nanoflower like structure with increased length and the width size of the prism. The produced In:ZnO is hexagonal wurtzite in structure with increased crystallite size from 21.7 to 32.3 ± 0.01 nm as In-doping level increased from 0 to 6.5 at.%. An improved crystal quality was revealed with decreased line broadening of the X-ray diffraction (XRD) measurements. The lattice parameters obtained from XRD measurements are observed to increase due to the incorporation of larger In3+ ionic radius at the Zn2+ ion lattices. The expansion of the lattice due to tensile strain caused the XRD diffraction peaks to shift towards the smaller angle. The bond length and dislocation density variations are in agreement with the variations of crystallite size and lattice parameters. The absorption band edge acquired using the UV–Vis diffuse reflectance measurements were observed to have red shifted due to the increased crystallite size with the increase in In-doping. The optical energy band gap decreased uniformly from 3.27 to 3.21 ± 0.01 eV as the amount of In-doping increased; which is in the range for optoelectronics device applications. Photoluminescence measurements depict both the near band gap emission at around 283 nm and deep level emission at about 618 nm. Both the emission bands were red shifted due to the incorporation of larger In3+ ion. An appropriate doping of group III In atom using the controlled refluxed sol–gel synthesis method helps to modify the material properties of ZnO for possible nano and microscale optoelectronics applications.

Notes

Acknowledgements

The authors are grateful and wishes to acknowledge Ministry of Education, Ethiopia for the financial support and also acknowledge the National Research Foundation, through the directorate of research of the University of the Free State, South Africa.

Compliance with ethical standards

Conflict of interest

The authors declare that there is no conflict of interests regarding this study.

References

  1. 1.
    J.H. Lim, S.M. Lee, H. Kim, H.Y. Kim, J. Park, S. Jung, G.C. Park, J. Kim, J. Joo, Sci. Rep. 7, 41992 (2017).  https://doi.org/10.1038/srep41992 CrossRefGoogle Scholar
  2. 2.
    D. Daksh, Y.K. Agrawal, Rev. Nanosci. Nanotechnol. 5, 1–27 (2016).  https://doi.org/10.1166/rnn.2016.1071 CrossRefGoogle Scholar
  3. 3.
    S. Salam, M. Islam, A. Akram, Thin Solid Films 529, 242–247 (2013).  https://doi.org/10.1016/j.tsf.2012.10.079 CrossRefGoogle Scholar
  4. 4.
    A.K.K. Kyaw, Y. Wang, D.W. Zhao, Z.H. Huang, X.T. Zeng, X.W. Sun, Phys. Status Solidi A 208(11), 2635–2642 (2011).  https://doi.org/10.1002/pssa.201127263 CrossRefGoogle Scholar
  5. 5.
    T. Marimuthu, N. Anandhan, R. Thangamuthu, S. Surya, Superlattices Microstruct. 98, 332–341 (2016).  https://doi.org/10.1016/j.spmi.2016.08.026 CrossRefGoogle Scholar
  6. 6.
    A.B. Djurišić, A.M.C. Ng, X.Y. Chen, Prog. Quantum Electron. 34, 191–259 (2010).  https://doi.org/10.1016/j.pquantelec.2010.04.001 CrossRefGoogle Scholar
  7. 7.
    R. Vittal, K. Ho, Renew. Sustain. Energy Rev. 70, 920–935 (2017).  https://doi.org/10.1016/j.rser.2016.11.273 CrossRefGoogle Scholar
  8. 8.
    D.C. Pugh, V. Luthra, A. Singh, I.P. Parkin, RSC Adv. 5, 85767–85774 (2015).  https://doi.org/10.1039/c5ra11613a CrossRefGoogle Scholar
  9. 9.
    H. Morkoç, Ü. Ozgür, Zinc Oxide Fundamentals, Materials and Device Technology (WILEY-VCH Verlag GmbH & Co. KgaA, Weinheim, 2009)CrossRefGoogle Scholar
  10. 10.
    A. Wei, L. Pan, W. Huang, Mater. Sci. Eng. B 176, 1409–1421 (2011).  https://doi.org/10.1016/j.mseb.2011.09.005 CrossRefGoogle Scholar
  11. 11.
    Y. Lin, W. Wei, Y. Wang, J. Zhou, D. Sun, X. Zhang, S. Ruan, J. Alloys Compd (2015).  https://doi.org/10.1016/j.jallcom.2015.07.242 Google Scholar
  12. 12.
    C.B. Ong, L.Y. Ng, A. Mohammad, Renew. Sustain. Eng. Rev. 81, 536–551 (2018).  https://doi.org/10.1016/j.rser.2017.08.020 CrossRefGoogle Scholar
  13. 13.
    Y. Lai, M. Meng, Y. Yu, X. Wang, T. Ding, Appl. Catal. B 105, 335–345 (2011).  https://doi.org/10.1016/j.apcatb.2011.04.028 CrossRefGoogle Scholar
  14. 14.
    J.P. McKelvey, Solid State and Semiconductor Physics (Robert E. Krieger Publishing Company Malabar, Florida, 1966), p. 257Google Scholar
  15. 15.
    M. Ahmad, J. Zhao, J. Iqbal, W. Miao, L. Xie, R. Mo, J. Zhu, J. Phys. D 42, 165406 (2009).  https://doi.org/10.1088/0022-3727/42/16/165406 CrossRefGoogle Scholar
  16. 16.
    F. Cai, L. Zhu, H. He, J. Li, Y. Yang, X. Chen, Z. Ye, J. Alloy. Compd. 509, 316–320 (2011).  https://doi.org/10.1016/j.jallcom.2010.09.016 CrossRefGoogle Scholar
  17. 17.
    S. Edinger, N. Bansal, M. Bauch, R.A. Wibowo, G. Újvári, R. Hamid, G. Trimmel, T. Dimopoulos, J. Mater. Sci. 52, 8591–8602 (2017).  https://doi.org/10.1007/s10853-017-1084-8 CrossRefGoogle Scholar
  18. 18.
    N. Al-Dahoudi, A. AlKahlout, S. Heusing, P. Herbeck-Engel, R. Karos, P. Oliveira, J. Sol-Gel Sci. Technol. (2013).  https://doi.org/10.1007/s10971-013-3114-6 Google Scholar
  19. 19.
    K.S. Khashan, A. Hadi, M. Mahdi, M.K. Hamid, Appl. Phys. A 125, 51 (2019).  https://doi.org/10.1007/s00339-018-2356-0 CrossRefGoogle Scholar
  20. 20.
    E. Pál, V. Hornok, A. Oszkó, I. Dékány, Coll. Surf. A 340, 1–9 (2009).  https://doi.org/10.1016/j.colsurfa.2009.01.020 CrossRefGoogle Scholar
  21. 21.
    N. Qin, Q. Xiang, H. Zhao, J. Zhang, J. Xu, CrystEngComm (2014).  https://doi.org/10.1039/c4ce00637b Google Scholar
  22. 22.
    E.T. Seid, F.B. Dejene, Z.N. Urgessa, J.R. Botha, Appl. Phys. A 124, 738 (2018).  https://doi.org/10.1007/s00339-018-2148-6 CrossRefGoogle Scholar
  23. 23.
    A. Umar, S.H. Kim, R. Kumar, M.S. Al-Assiri, A.E. Al-Salami, A.A. Ibrahim, S. Baskoutas, Materials 10, 1337 (2017).  https://doi.org/10.3390/ma10111337 CrossRefGoogle Scholar
  24. 24.
    J.M. Hancock, W.M. Rankin, B. Woolsey, R.S. Turley, R.G. Harrison, J. Sol-Gel. Sci. Technol. 84, 214–221 (2017).  https://doi.org/10.1007/s10971-017-4486-9 CrossRefGoogle Scholar
  25. 25.
    S.G. Leonardi, Chemosensors 5, 17 (2017).  https://doi.org/10.3390/chemosensors5020017 CrossRefGoogle Scholar
  26. 26.
    S.K. Arya, S. Saha, J.E. Ramirez-Vick, V. Gupta, S. Bhansali, S.P. Singh, Anal. Chim. Acta 737, 1–21 (2012).  https://doi.org/10.1016/j.aca.2012.05.048 CrossRefGoogle Scholar
  27. 27.
    L. Lin, X. Peng, S. Chen, B. Zhang, Y. Feng, RSC Adv. (2015).  https://doi.org/10.1039/c5ra01938a Google Scholar
  28. 28.
    F. Aslan, A. Tumbul, A. Göktaş, R. Budakoğlu, İ.H. Mutlu, J. Sol-Gel. Sci. Technol. 80, 389–395 (2016).  https://doi.org/10.1007/s10971-016-4131-z CrossRefGoogle Scholar
  29. 29.
    P. Liping, F. Liang, Z. Yan, W. Weidong, R. Haibo, K. Chunyang, J. Wuhan Univ. Technol.-Mater. Sci. Ed. 32(2), 866–870 (2017).  https://doi.org/10.1007/s11595-017-1681-z Google Scholar
  30. 30.
    R. Dhahri, M. Hjiri, L.E. Mir, H. Alamri, A. Bonavita, D. Iannazzo, S.G. Leonardi, G. Neri, J. Sci. 2, 34–40 (2017).  https://doi.org/10.1016/j.jsamd.2017.01.003 Google Scholar
  31. 31.
    S.S. Alias, A.B. Ismail, A.A. Mohamad, J. Alloy. Compd. 499, 231–237 (2010).  https://doi.org/10.1016/j.jallcom.2010.03.174 CrossRefGoogle Scholar
  32. 32.
    G. Magesh, G. Bhoopathi, A.P. Arun, E.R. Kumar, C. Srinivas, S. Sathiyaraj, Superlattices Microstruct. 124, 41–51 (2018).  https://doi.org/10.1016/j.spmi.2018.10.002 CrossRefGoogle Scholar
  33. 33.
    B.D. Cullity, S.R. Stock, Elements of X-Ray Diffraction, 3rd edn. (Prentice Hall, Upper Saddle River, 2001)Google Scholar
  34. 34.
    A.K. Zak, W.H. Abd-Majid, M.E. Abrishami, R. Yousefi, Solid State Sci. 13, 251–256 (2011).  https://doi.org/10.1016/j.solidstatesciences.2010.11.024 CrossRefGoogle Scholar
  35. 35.
    P. Bindu, S. Thomas, J. Theor. Appl. Phys. 8, 123–134 (2014).  https://doi.org/10.1007/s40094-014-0141-9 CrossRefGoogle Scholar
  36. 36.
    C.F. Klingshirn, B.K. Meyer, A. Waag, A. Hoffmann, J. Geurts, Zinc Oxide From Fundamental Properties Towards Novel Applications, Springer Series in Materials Science (Springer, Berlin, Heidelberg, 2010).  https://doi.org/10.1007/978-3-642-10577-7 CrossRefGoogle Scholar
  37. 37.
    E.T. Seid, F.B. Dejene, J. Alloy. Compd. 787, 658–665 (2019).  https://doi.org/10.1016/j.jallcom.2019.02.163 CrossRefGoogle Scholar
  38. 38.
    A. Hafdallah, F. Yanineb, M.S. Aida, N. Attaf, J. Alloy. Compd. 509, 7267–7270 (2011).  https://doi.org/10.1016/j.jallcom.2011.04.058 CrossRefGoogle Scholar
  39. 39.
    H. Liu, B. Huang, Z. Wang, X. Qin, X. Zhang, J. Wei, Y. Dai, P. Wang, M. Whangbo, J. Alloy. Compd. 507, 326–330 (2010).  https://doi.org/10.1016/j.jallcom.2010.07.192 CrossRefGoogle Scholar
  40. 40.
    J. Zhang, L. Sun, J. Yin, H. Su, C. Liao, C. Yan, Chem. Mater. 14, 4172–4177 (2002).  https://doi.org/10.1021/cm020077h CrossRefGoogle Scholar
  41. 41.
    A.B. Djurišić, Y.H. Leung, K.H. Tam, Y.F. Hsu, L. Ding, W.K. Ge, Y.C. Zhong, K.S. Wong, W.K. Chan, H.L. Tam, K.W. Cheah, W.M. Kwok, D.L. Phillips, Nanotechnology 18, 095702 (2007).  https://doi.org/10.1088/0957-4484/18/9/095702 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of PhysicsUniversity of the Free State (Qwaqwa Campus)PhuthaditjhabaSouth Africa

Personalised recommendations