Advertisement

Synthesis, structural, strength and corrosion properties of thin films of the type CuX (X = Bi, Mg, Ni)

  • A. L. KozlovskiyEmail author
  • M. V. Zdorovets
Article
  • 30 Downloads

Absract

The paper presents the results of studying of structural and phase properties of films based on copper–bismuth, copper–magnesium, copper–nickel, obtained by the method of electrochemical deposition. The dependences of the influence of the synthesis conditions on the phase composition and the strength and corrosion properties of the synthesized films are established. Interest in two-component films based on selected metals is due to their structural properties and the prospect of using them as protective coatings. The choice of elements of bismuth, magnesium and nickel in combination with copper is due to the possibility of obtaining structures with different phases, which can have a significant impact on the corrosion properties of films when interacting with aggressive media. During tests for corrosion resistance, it was found that a decrease in the concentration of copper and copper-containing phases leads to an increase in resistance to degradation and oxidation of thin films.

Notes

Funding

This study was funded by the Ministry of Education and Science of the Republic of Kazakhstan Grant No. AP05134068.

References

  1. 1.
    Arian Ghorbanpour et al., Oriented UiO-66 thin films through solution shearing. CrystEngComm 20(3), 294–300 (2018)CrossRefGoogle Scholar
  2. 2.
    I.I. Kabir et al., Contamination of TiO2 thin films spin coated on rutile and fused silica substrates. Surf. Coat. Technol. 354, 369–382 (2018)CrossRefGoogle Scholar
  3. 3.
    Rateeya Saikaew et al., Temperature controlled loading and release of curcumin in polyelectrolyte multilayers thin films. Mater. Lett. 215, 38–41 (2018)CrossRefGoogle Scholar
  4. 4.
    S. Sharma et al., CeCo5 thin films with perpendicular anisotropy grown by molecular beam epitaxy. J. Magn. Magn. Mater. 452, 80–85 (2018)CrossRefGoogle Scholar
  5. 5.
    Meghan McLeod, Christopher Tabor, Tunable conductivity of germanium thin films fabricated via doped colloidal nanoparticle sintering. J. Phys. Chem. C 123(2), 1477–1482 (2018)CrossRefGoogle Scholar
  6. 6.
    Muying Wu et al., Enhanced dielectric tunable performance of Bi1. 5Zn1. 0Nb1. 5O7/BaTi0. 85Sn0. 15O3 heterolayer thin films. Ceram. Int. 45(5), 6509–6513 (2019)CrossRefGoogle Scholar
  7. 7.
    Hosein Kafashan, Optoelectronic properties of In-doped SnS thin films. Ceram. Int. 45(1), 334–345 (2019)CrossRefGoogle Scholar
  8. 8.
    Matti Putkonen et al., Atomic layer deposition of Ti–Nb–O thin films onto electrospun fibers for fibrous and tubular catalyst support structures. J. Vac. Sci. Technol. A 36(1), 01A102 (2018)CrossRefGoogle Scholar
  9. 9.
    Jaclyn K. Sprenger et al., Electron-enhanced atomic layer deposition of silicon thin films at room temperature. J. Vac. Sci. Technol. A 36(1), 01A118 (2018)CrossRefGoogle Scholar
  10. 10.
    Jae Hoon Bang et al., Effect of microwave irradiation on the electrical and optical properties of SnO2 thin films. Ceram. Int. 45(6), 7723–7729 (2019)CrossRefGoogle Scholar
  11. 11.
    Beh Holger, Daniel Hiller, Optimization of ALD-ZnO thin films toward higher conductivity. Phys. Status Solidi (a) 215(16), 1700880 (2018)CrossRefGoogle Scholar
  12. 12.
    Zohra Nazir Kayani et al., Tuning of optical and antibacterial characteristics of ZnO thin films: role of Ce content. Ceram. Int. 45(3), 3930–3939 (2019)CrossRefGoogle Scholar
  13. 13.
    Lian Tian et al., Aluminum nitride thin films deposited by hydrogen plasma enhanced and thermal atomic layer deposition. Surf. Coat. Technol. 347, 181–190 (2018)CrossRefGoogle Scholar
  14. 14.
    Buse Cömert Sertel et al., Development of MgO: TiO2 thin films for gas sensor applications. Ceram. Int. 45(3), 2917–2921 (2018)CrossRefGoogle Scholar
  15. 15.
    Jani Hämäläinen et al., Rhenium metal and rhenium nitride thin films grown by atomic layer deposition. Angew. Chem. Int. Ed. 57(44), 14538–14542 (2018)CrossRefGoogle Scholar
  16. 16.
    P. Pizá-Ruiz et al., Delafossite CuFeO2 thin films via aerosol assisted CVD: Synthesis and characterization. Ceram. Int. 45(1), 1156–1162 (2019)CrossRefGoogle Scholar
  17. 17.
    Kaupo Kukli et al., Atomic layer deposition and performance of ZrO2–Al2O3 thin films. ECS J. Solid State Sci. Technol. 7(5), P287–P294 (2018)CrossRefGoogle Scholar
  18. 18.
    Callisto MacIsaac et al., Atomic and Molecular Layer Deposition of Hybrid Mo–Thiolate Thin Films with Enhanced Catalytic Activity. Adv. Func. Mater. 28(26), 1800852 (2018)CrossRefGoogle Scholar
  19. 19.
    Miika Mattinen et al., Atomic layer deposition of crystalline molybdenum oxide thin films and phase control by post-deposition annealing. Mater. Today Chem. 9, 17–27 (2018)CrossRefGoogle Scholar
  20. 20.
    Young Il Lee et al., A low-temperature thin-film encapsulation for enhanced stability of a highly efficient perovskite solar cell. Adv. Energy Mater. 8(9), 1701928 (2018)CrossRefGoogle Scholar
  21. 21.
    Joel Molina-Reyes et al., Physical and electrical characterization of yttrium-stabilized zirconia (YSZ) thin films deposited by sputtering and atomic-layer deposition. J. Mater. Sci.: Mater. Electron. 29(18), 15349–15357 (2018)Google Scholar
  22. 22.
    Archan Banerjee et al., Optical properties of refractory metal based thin films. Opt. Mater. Express 8(8), 2072–2088 (2018)CrossRefGoogle Scholar
  23. 23.
    Yun Liu et al., Dielectric relaxation and resistive switching of Bi0. 96Sr0. 04Fe0. 98Co0. 02O3/CoFe2O4 thin films with different thicknesses of the Bi0. 96Sr0. 04Fe0. 98Co0. 02O3 layer. Ceram. Int. 45(3), 3522–3530 (2019)CrossRefGoogle Scholar
  24. 24.
    Tolga Aytug et al., Vacuum-assisted low-temperature synthesis of reduced graphene oxide thin-film electrodes for high-performance transparent and flexible all-solid-state supercapacitors. ACS Appl. Mater. Interfaces 10(13), 11008–11017 (2018)CrossRefGoogle Scholar
  25. 25.
    Peng Chen et al., Chemical synthesis of two-dimensional atomic crystals, heterostructures and superlattices. Chem. Soc. Rev. 47(9), 3129–3151 (2018)CrossRefGoogle Scholar
  26. 26.
    Akanksha Paraye et al., Effect of pH and sulfur precursor concentration on electrochemically deposited CZTS thin films using glycine as the complexing agent. Appl. Surf. Sci. 435, 1249–1256 (2018)CrossRefGoogle Scholar
  27. 27.
    E. Kaniukov et al., Tunable synthesis of copper nanotubes. IOP Conf. Ser.: Mater. Sci. Eng. 110(1), 012013 (2016)CrossRefGoogle Scholar
  28. 28.
    M.E. Kaliekperov et al., Radiation Stability of Copper Films under Irradiation with He 2 + Ions. High Energy Chem. 52(5), 419–422 (2018)CrossRefGoogle Scholar
  29. 29.
    Shibin Thomas et al., Single step electrodeposition process using ionic liquid to grow highly luminescent silicon/rare earth (Er, Tb) thin films with tunable composition. RSC Adv. 8(7), 3789–3797 (2018)CrossRefGoogle Scholar
  30. 30.
    Liangxing Jiang et al., Graphene-Sb2Se3 thin films photoelectrode synthesized by in situ electrodeposition. Mater. Lett. 224, 109–112 (2018)CrossRefGoogle Scholar
  31. 31.
    M. Kaliekperov et al., Study on changes in structural properties of Ni/Cu dendrites under irradiation by He-particles. Mater. Res. Express 5(3), 035054 (2018)CrossRefGoogle Scholar
  32. 32.
    M.Y. Presnyakov et al., Growth morphology and structure of PdCu ion-plasma condensate in the pores of SiO2 and Al2O3 amorphous matrices. J. Cryst. Growth 486, 66–70 (2018)CrossRefGoogle Scholar
  33. 33.
    I.E. Kenzhina et al., Synthesis and properties of Cu/CuO nanostructures obtained by electrochemical deposition. Mater. Res. Express 5(3), 035052 (2018)CrossRefGoogle Scholar
  34. 34.
    Shariqa Hassan Butt et al., Aliovalent Ho3+ ion doped BaZrO3 thin films; Structural, optical and photoluminescence properties. Ceram. Int. 45(5), 5648–5652 (2019)CrossRefGoogle Scholar
  35. 35.
    S.E. Demyanov et al., Nanostructures of Si/SiO2/metal systems with tracks of fast heavy ions. Bull. Russ. Acad. Sci.: Phys. 72(9), 1193–1195 (2008)CrossRefGoogle Scholar
  36. 36.
    Hui Sun et al., p-type conductive NiOx: Cu thin films with high carrier mobility deposited by ion beam assisted deposition. Ceram. Int. 44(3), 3291–3296 (2018)CrossRefGoogle Scholar
  37. 37.
    U. Chalapathi et al., Two-stage processed CuSbS2 thin films for photovoltaics: effect of Cu/Sb ratio. Ceram. Int. 44(12), 14844–14849 (2018)CrossRefGoogle Scholar
  38. 38.
    P. Pizá-Ruiz et al., Delafossite CuFeO2 thin films via aerosol assisted CVD: synthesis and characterization. Ceram. Int. 45(1), 1156–1162 (2019)CrossRefGoogle Scholar
  39. 39.
    S. Demyanov et al., Positive magnetoresistive effect in Si/SiO2 (Cu/Ni) nanostructures. Sens. Actuators A 216, 64–68 (2014)CrossRefGoogle Scholar
  40. 40.
    M.G. Flokstra et al., Observation of anomalous Meissner screening in Cu/Nb and Cu/Nb/Co thin films. Phys. Rev. Lett. 120(24), 247001 (2018)CrossRefGoogle Scholar
  41. 41.
    Yu. Zhang et al., Synthesis and investigation of environmental protection and earth-abundant kesterite Cu2MgxZn1-xSn (S, Se) 4 thin films for solar cells. Ceram. Int. 44(13), 15249–15255 (2018)CrossRefGoogle Scholar
  42. 42.
    Alexandre H. Pinto et al., Synthesis of Cu 2 (Zn 1–x Co x) SnS 4 nanocrystals and formation of polycrystalline thin films from their aqueous dispersions. Journal of Materials Chemistry A 6(3), 999–1008 (2018)CrossRefGoogle Scholar
  43. 43.
    E. Kaniukov et al., Growth mechanisms of spatially separated copper dendrites in pores of a SiO2 template. Philos. Mag. 97(26), 2268–2283 (2017)CrossRefGoogle Scholar
  44. 44.
    EYu. Kaniukov et al., Electrochemically deposited copper nanotubes. J. Surf. Invest. 11(1), 270–275 (2017)CrossRefGoogle Scholar
  45. 45.
    Jean-Marc Roussel, Marc Gailhanou, Stability of a screw dislocation in a (011) copper nanowire. Phys. Rev. Lett. 115(7), 075503 (2015)CrossRefGoogle Scholar
  46. 46.
    H. Prunier et al., Original anisotropic growth mode of copper nanorods by vapor phase deposition. Cryst. Growth Des. 14(12), 6350–6356 (2014)CrossRefGoogle Scholar
  47. 47.
    Xing Zhou et al., Shape-controlled synthesis of copper particles with high electrical conductivity behaviours. Micro & Nano Lett. 6(4), 269–272 (2011)CrossRefGoogle Scholar
  48. 48.
    A. Kozlovskiy et al., Effect of electronic modification on nanostructures stability to degradation. Mater. Res. Express 5(7), 075010 (2018)CrossRefGoogle Scholar
  49. 49.
    M.V. Zdorovets et al., Effect of ionizing radiation on structural and conductive properties of copper nanotubes. Phys. Lett. A 382(4), 175–179 (2018)CrossRefGoogle Scholar
  50. 50.
    Sung-Gi Hur et al., Effect of the deposition temperature on temperature coefficient of resistance in CuNi thin film resistors. J. Vac. Sci. Technol. B 22(6), 2698–2701 (2004)CrossRefGoogle Scholar
  51. 51.
    A. Kozlovskiy et al., Structure and corrosion properties of thin TiO2 films obtained by magnetron sputtering. Vacuum 164, 224–232 (2019)CrossRefGoogle Scholar
  52. 52.
    M.D. Kutuzau et al., The behavior of Ni nanotubes under the influence of environments with different acidities. CrystEngComm 20(23), 3258–3266 (2018)CrossRefGoogle Scholar
  53. 53.
    EYu. Kaniukov et al., Degradation mechanism and way of surface protection of nickel nanostructures. Mater. Chem. Phys. 223, 88–97 (2019)CrossRefGoogle Scholar
  54. 54.
    A. Kozlovskiy et al., Dynamics of changes in structural properties of AlN ceramics after Xe + 22 ion irradiation. Vacuum 155, 412–422 (2018)CrossRefGoogle Scholar
  55. 55.
    A. Kozlovskiy et al., Effect of swift heavy ions irradiation on AlN ceramics properties. Ceram. Int. 44(16), 19787–19793 (2018)CrossRefGoogle Scholar
  56. 56.
    M.V. Zdorovets, A.L. Kozlovskiy, Argon ion irradiation effect on Zn nanotubes. J. Mater. Sci.: Mater. Electron. 29(5), 3621–3630 (2018)Google Scholar
  57. 57.
    Julio Puerta, Pablo Martin, Three and four generalized Lorentzian approximations for the Voigt line shape. Appl. Opt. 20(22), 3923–3928 (1981)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Kazakh-Russian International UniversityAktobeKazakhstan
  2. 2.The Institute of Nuclear Physics of Republic of KazakhstanAlmatyKazakhstan
  3. 3.L.N. Gumilyov, Eurasian National UniversityNur-SultanKazakhstan
  4. 4.Ural Federal UniversityYekaterinburgRussia

Personalised recommendations