Advertisement

The effect of zinc iodide on the physicochemical properties of highly flexible transparent poly (vinyl alcohol) based polymeric composite films: opto-electrical performance

  • A. BouzidiEmail author
  • W. Jilani
  • H. Guermazi
  • I. S. Yahia
  • H. Y. Zahran
  • G. B. Sakr
Article
  • 26 Downloads

Abstract

Undoped PVA and Zinc iodide (ZnI2) inorganic salt doped PVA with different ZnI2 (1–37) wt% percentages are novel composite polymer dielectric films have been successfully prepared by the solution cast method. The developed dielectric films were characterized by analyzing the physicochemical phenomenon to study the effect of ZnI2 inorganic salt concentrations. The XRD histogram explicated the being semi-crystalline nature of PVA polymeric matrix with ZnI2 inorganic salt doping. The optical UV–Vis–NIR characteristics of the composite dielectric films were measured. The effect of ZnI2 inorganic salt loading contents increasing on opto-electrical properties such as transmittance, Absorbance, optical band gap in addition to the AC impedance spectroscopy was studied in the polymer composite dielectric film. The modifications in the optical properties of PVA film are attributed to the interaction between the salt molecules and the PVA matrix. The frequency dependent AC\DC electric conductivity at different ZnI2 content follows and obeyed the Jonscher’s universal power law. The data of AC impedance spectroscopy is to map ready the complex generalization of resistance that includes capacitive and inductive effects of the polymer composite dielectrics as a function of the angular frequency. These films with excellent optoelectronic phenomenon beside appreciable flexibilities aid their claims as multifunctional UV shielding devices with enhanced a character of semiconductors.

Notes

Acknowledgement

The authors express their appreciation to “The Research Center for Advanced Materials Science (RCAMS)” at King Khalid University for funding this work under Grant Number RCAMS/KKU/008-18.

References

  1. 1.
    I.S. Yahia, A. Bouzidi, H.Y. Zahran, W. Jilani, S. AlFaify, H. Algarni, H. Guermazi, J. Mol. Struct. 1156, 492–500 (2018)CrossRefGoogle Scholar
  2. 2.
    M.M. Abutalib, I.S. Yahia, J. Mater. Sci. Mater. El. (2018).  https://doi.org/10.1007/s10854-018-0106-x Google Scholar
  3. 3.
    G. Sreekumar, P.G. Louie Frobel, S. Sreeja, S.R. Suresh, S. Mayadevi, C.I. Muneera, C.S.S. Sandeep, R. Philip, C. Mukharjee, Chem. Phys. Lett. 506, 61 (2011)CrossRefGoogle Scholar
  4. 4.
    S. Matsumoto, K.I. Kubodera, T. Kurihara, T. Kaino, Opt. Comm. 76, 147 (1990)CrossRefGoogle Scholar
  5. 5.
    B. Karthikeyan, M. Anija, P. Venkatesan, C.S.S. Sandeep, R. Philip, Opt. Commun. 280, 482 (2007)CrossRefGoogle Scholar
  6. 6.
    B. Karthikeyan, M. Anija, R. Philip, Appl. Phys. Lett. 88, 053104 (2006)CrossRefGoogle Scholar
  7. 7.
    V. Krishnakumar, G. Shanmugam, R. Nagalakshmi, J. Phys. D Appl. Phys. 45, 165102 (2012)CrossRefGoogle Scholar
  8. 8.
    J. He, W. Ji, G.H. Ma, S.H. Tang, E.S.W. Kong, S.Y. Chow, X.H. Zhang, Z.L. Hua, J.L. Shi, J. Phys. Chem. B 109, 4373 (2005)CrossRefGoogle Scholar
  9. 9.
    Z. Qiao, Y. Xie, G. Li, Y. Zhu, Z. Qian, Mater. Sci. 35, 285 (2000)CrossRefGoogle Scholar
  10. 10.
    S. Patachia, Blends based on poly(vinyl alcohol) and the products based on this polymer, in Handbook of polymer blends and composites, ed. by C. Vasile, A.K. Kulshreshtha (Rapra Technology, Shawbury, 2003), pp. 288–365Google Scholar
  11. 11.
    S. Patachia, A.J.M. Valente, A. Papancea, V.M.M.V. Lobo, Poly(vinyl alcohol) [PVA]-based polymer membranes: synthesis and applications, in Organic and physical chemistry using chemical kinetics, ed. by Y.G. Medvedevskikh, A. Valente, R.A. Howell, G.E. Zaikov (Nova Publishers, New York, 2007), pp. 103–166Google Scholar
  12. 12.
    R.D.K. Misra, P. Nerikar, K. Bertrand, D. Murphy, Mater. Sci. Eng. A 384, 284 (2004)CrossRefGoogle Scholar
  13. 13.
    L. Mohammed, M.N.M. Ansari, G. Pua, M. Jawaid, M.S. Islam, Int. J. Polym. Sci. (2015).  https://doi.org/10.1155/2015/243947 Google Scholar
  14. 14.
    M. Rubinstein, R.H. Colby, Polymer Physics (Oxford University Press, Oxford, 2003)Google Scholar
  15. 15.
    P. Potschke, S.M. Dudkin, I. Alig, Polym. 44, 5023 (2003)CrossRefGoogle Scholar
  16. 16.
    M.F.H. AL-Kadhemy, A.N.A. AL-Jabry, Int. J. Mat. Sci. Innov. 2(6), 178 (2014)Google Scholar
  17. 17.
    P.M. Buschbaum, Adv. Mater. 26, 7692 (2014)CrossRefGoogle Scholar
  18. 18.
    R. Kroon, M. Lenes, J.C. Hummelen, P.W.M. Blom, B.D. Boer, Polym. Rev. 48, 531 (2008)CrossRefGoogle Scholar
  19. 19.
    C. Kanimozhi, P. Balraju, G.D. Sharma, S. Patil, J. Phys. Chem. B 114, 3095 (2010)CrossRefGoogle Scholar
  20. 20.
    E. Sheha, H. Khoder, T.S. Shanap, M.G. El-Shaarawy, M.K. El-Mansy, Optik. 123, 1161 (2012)CrossRefGoogle Scholar
  21. 21.
    K. Sumida, K. Hiramatsu, W. Sakamoto, T. Yogo, J. Nanopart. Res. 9, 225 (2007)CrossRefGoogle Scholar
  22. 22.
    X. Qin, W. Xia, R. Sinko, S. Keten, Nano Lett. 15, 6738 (2015)CrossRefGoogle Scholar
  23. 23.
    C. Uma Devi, A.K. Sharma, V.V.R.N. Rao, Mater. Lett. 56, 167 (2002)CrossRefGoogle Scholar
  24. 24.
    F.H.M. Al-Kadhemy, W.H. Abaas, Atti Della Fondazione Giorgio Ronchi. 3, 359 (2012)Google Scholar
  25. 25.
    H.M. Zidon, A. Tawansi, M. Abu-Elnader, Phys. B 339, 78 (2003)CrossRefGoogle Scholar
  26. 26.
    K. Deshmukh, M.B. Ahamed, R.R. Deshmukh, P.R. Bhagat, S.K. Pasha, A. Bhagat, Polym. Plast. Technol. Eng. 55, 231 (2016)CrossRefGoogle Scholar
  27. 27.
    T. Martins, R. Weiss, T. Atvars, J. Braz. Chem. Soc. 19, 1450 (2008)CrossRefGoogle Scholar
  28. 28.
    Z. Khodair, M. Saeed, H.A. Allah, Iraq. J. Phys. 12, 47 (2018)Google Scholar
  29. 29.
    S.M. El-Bashir, I.S. Yahia, M.A. Binhussain, M.S. AlSalhi, Result Phys. 7, 1238 (2017)CrossRefGoogle Scholar
  30. 30.
    I.S. Yahia, S.M.A.S. Keshk, Opt. Laser Technol. 90, 197 (2017)CrossRefGoogle Scholar
  31. 31.
    W. Al-Taay, M.A. Nabi, R.M. Yusop, E. Yousif, B.M. Abdullah, J. Salimon, N. Salih, S.I. Zubairi, Int. J. Polym. Sci. 2014, 697809 (2014)Google Scholar
  32. 32.
    T.A. Hamdalla, T.A. Hanafy, A.E. Bekheet, J. Spect. 2015, 204867 (2015)Google Scholar
  33. 33.
    K.N. Kumar, R. Padma, Y.C. Ratnakaram, M. Kang, RSC Adv. 7, 15084 (2017)CrossRefGoogle Scholar
  34. 34.
    M. Wu, H.Z. Jiao, Z. Li, Y. San, Colloid Surf A Physicochem. Eng. Aspects 313, 35 (2008)CrossRefGoogle Scholar
  35. 35.
    H. Wang, P. Fang, Z. Chen, S. Wang, Appl. Surf. Sci. 253, 8495 (2007)CrossRefGoogle Scholar
  36. 36.
    P.P.H. Fourcry, D. Carre, J. Rivet, Acta Crystallogr. Sect. B Struct. Crystallogr. Cryst. Chem. B34, 3160 (1978)CrossRefGoogle Scholar
  37. 37.
    K. Hilpert, L. Bencivenni, B. Saha, J. Chem. Phys. 83, 5227 (1985)CrossRefGoogle Scholar
  38. 38.
    Y.V. Cantu, R. Hauge, L. Norman, W.E. Billups, J. Appl. Polym. Sci. 89, 1250 (2003)CrossRefGoogle Scholar
  39. 39.
    W.P. Hagan, R.J. Latham, R.G. Linford, S.L. Vickers, Solid State Ion. 7071, 666 (1994)CrossRefGoogle Scholar
  40. 40.
    M. Kurumova, D. Lopez, R. Benavente, C. Mijangos, J.M. Perena, Polym. 41, 9265 (2000)CrossRefGoogle Scholar
  41. 41.
    A. Schejn, L. Balan, V. Falk, L. Aranda, Gh Medjahdi, R. Schneider, Cryst. Eng. Commun. 16, 4493 (2014)CrossRefGoogle Scholar
  42. 42.
    F. Yakuphanoglu, M. Sekerci, E. Evin, Phys. B 382, 21 (2006)CrossRefGoogle Scholar
  43. 43.
    K.S. Hemalatha, K. Rukmani, N. Suriyamurthy, B.M. Nagabhushana, Mater. Res. Bull. 51, 438 (2014)CrossRefGoogle Scholar
  44. 44.
    P. Tao, A. Viswanath, L.S. Schadler, B.C. Benicewicz, R.W. Siegel, A.C.S. Appl, Mater. Interface 3, 3638 (2011)CrossRefGoogle Scholar
  45. 45.
    P. Singh, A. Kaushal, D. Kaur, J. Alloy. Compd. 471, 11 (2009)CrossRefGoogle Scholar
  46. 46.
    R.M. Ahmed, Int. J. Photoenergy 2009, 7 (2009).  https://doi.org/10.1155/2009/150389 CrossRefGoogle Scholar
  47. 47.
    A.K. Jonscher, Dielectric relaxation in solids (Chelsea Dielectrics, London, 1993)Google Scholar
  48. 48.
    P. Muralidharan, M. Venkateswarlu, N. Satyanarayana, J. Non-Cryst. Solid. 351, 583 (2005)CrossRefGoogle Scholar
  49. 49.
    A.B. Afzal, M.J. Akhtar, M. Nadeem, M. Ahmad, M.M. Hassan, T. Yasin, M. Mehmood, J. Phys. D Appl. Phys. 42, 015411 (2009)CrossRefGoogle Scholar
  50. 50.
    N.M. Kocherginsky, Z. Wang, Synth. Met. 156, 1065 (2006)CrossRefGoogle Scholar
  51. 51.
    S. More, R. Dhokne, S. Mohari, Mater. Res. Express 4, 055302 (2017)CrossRefGoogle Scholar
  52. 52.
    D.K. Pradhan, R.N.P. Choudhary, B.K. Samantaray, Polym. Lett. 2, 638 (2008)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • A. Bouzidi
    • 1
    • 2
    Email author
  • W. Jilani
    • 1
    • 3
  • H. Guermazi
    • 1
  • I. S. Yahia
    • 4
    • 5
    • 6
  • H. Y. Zahran
    • 4
    • 5
    • 6
  • G. B. Sakr
    • 6
  1. 1.Research Unit, Physics of Insulating and Semi-insulating Materials, Faculty of SciencesUniversity of SfaxSfaxTunisia
  2. 2.Technical and Vocational Training Corporation: Training Units Colleges of TechnologyKhamis MushaytKingdom of Saudi Arabia
  3. 3.Department of Physics, Faculty of Science Sciences and Arts Dhahran Al JanoubKing Khalid UniversityAbhaSaudi Arabia
  4. 4.Research Center for Advanced Materials Science (RCAMS)King Khalid UniversityAbhaSaudi Arabia
  5. 5.Advanced Functional Materials & Optoelectronic Laboratory (AFMOL), Department of Physics, Faculty of ScienceKing Khalid UniversityAbhaSaudi Arabia
  6. 6.Nanoscience Laboratory for Environmental and Bio-medical Applications (NLEBA), Semiconductor Lab, Department of Physics, Faculty of EducationAin Shams UniversityRoxyEgypt

Personalised recommendations