Advertisement

Dual-mode luminescence: a new perspective in calcium molybdate phosphor for solar cell application

  • Akta Verma
  • S. K. SharmaEmail author
Article
  • 26 Downloads

Abstract

Herein, a dual mode luminescence behavior of rare earth doped/codoped CaMoO4:(Eu3+, Eu3+/Yb3+) phosphors synthesized by hydrothermal method are presented. The structural analysis and surface morphology were investigated by X-ray diffraction, field emission scanning electron microscopy and Fourier transform infrared spectroscopy techniques. The optical properties were studied through UV–vis diffuse reflectance spectroscopy, photoluminescence (PL) and lifetime measurements. The PL excitation spectra of Eu3+ doped CaMoO4 phosphors were recorded at different excitation wavelengths such as 250, 270, 300, 394 nm wavelengths. The down-shifting PL emission spectra of phosphors were recorded at optimized 250 nm excitation wavelength. In addition, emission was also recorded for Eu3+/Yb3+ codoped CaMoO4 phosphor after an excitation wavelength 980 nm through up-conversion process. The phosphors show hypersensitive red emission (5D0 → 7F2) through down-shifting as well as up-conversion processes. The red color was visualized by using commission international de L’Eclairage (CIE) chromaticity diagram. Thus, the obtained results show that dual-mode red emitting phosphors may be used as spectral converter in solar cells.

Notes

Acknowledgements

The authors are thankful to Central Research Facility of IIT (ISM) Dhanbad for FESEM with EDX and UV–vis–NIR measurements. The authors are also thankful to Dr. V. K. Rai of Department of Applied Physics, IIT (ISM) Dhanbad for up-conversion measurement.

References

  1. 1.
    S. Dutta, S. Som, S.K. Sharma, RSC Adv. 5, 10 (2015)CrossRefGoogle Scholar
  2. 2.
    V.V. Rangari, S.J. Dhoble, J. Rare Earths 33, 2 (2015)CrossRefGoogle Scholar
  3. 3.
    B.K. Gupta, A. Kumar, P. Kumar, J. Dwivedi, G.N. Pandey, G. Kedawat, J. Appl. Phys. (2015).  https://doi.org/10.1063/1.4922983 Google Scholar
  4. 4.
    S.K. Singh, D.G. Lee, S.S. Yi, K. Jang, D.-S. Shin, J.H. Jeong, J. Appl. Phys. (2013).  https://doi.org/10.1063/1.4803053 Google Scholar
  5. 5.
    C. Strumpel, M. McCann, G. Beaucarne, V. Arkhipov, A. Slaoui, V. Svrcek, C. del Canizo, I. Tobias, Sol. Energy Mater. Sol. Cells 91, 4 (2017)Google Scholar
  6. 6.
    X. Huang, S. Han, W. Huang, X. Liu, Chem. Soc. Rev. 42, 1 (2013)CrossRefGoogle Scholar
  7. 7.
    T. Trupke, M.A. Green, P. Wurfel, J. Appl. Phys. 92, 7 (2002)Google Scholar
  8. 8.
    N. Chander, S.K. Sardana, P.K. Parashar, A. Khan, S. Chawla, V.K. Komarala, IEEE J. Photovolt. 5, 1 (2015)CrossRefGoogle Scholar
  9. 9.
    T.V. Gavrilović, D.J. Jovanović, V.M. Lojpur, M. Dramicanin, Sci Rep (2014).  https://doi.org/10.1038/srep04209 Google Scholar
  10. 10.
    G. Kaur, S.K. Singh, S.B. Rai, J. Appl. Phys. 107, 7 (2010)CrossRefGoogle Scholar
  11. 11.
    V. Kumar, S. Singh, S. Chawla, Superlattice Microstruct. 79, 86–95 (2015)CrossRefGoogle Scholar
  12. 12.
    S.K. Singh, A.K. Singh, S.B. Rai, Nanotechnology 22, 1 (2011)Google Scholar
  13. 13.
    R. Saraf, C. Shivakumara, N. Dhananjaya, S. Behera, H. Nagabhushana, J. Mater. Sci. 50, 1 (2015)CrossRefGoogle Scholar
  14. 14.
    R.Z. Zhuang, L.Z. Zhang, Z.B. Lin, G.F. Wang, Mater. Res. Innov. 12, 2 (2008)CrossRefGoogle Scholar
  15. 15.
    S. Belogurov, V. Kornoukhov, A. Annenkov, A. Borisevich et al., IEEE Trans. Nucl. Sci. 52, 4 (2015)Google Scholar
  16. 16.
    Z. Hou, R. Chai, M. Zhang, C. Zhang, P. Chong, Z. Xu, G. Li, J. Lin, Langmuir 25, 20 (2009)Google Scholar
  17. 17.
    S.K. Sharma, S. Dutta, S. Som, P.S. Mandal, J. Mater. Sci. Technol. 29, 7 (2013)CrossRefGoogle Scholar
  18. 18.
    S. Dutta, S. Som, J. Priya, S.K. Sharma, Solid State Sci, 18, 54 (2013)CrossRefGoogle Scholar
  19. 19.
    J. Li, T. Zhang, G. Zhu, H. Zheng, J. Rare Earth 37, 7 (2017)Google Scholar
  20. 20.
    W. Bai, Y. Liu, Y. Wang, X. Qiang, L. Feng, Ceram. Int. 41, 10 (2015)Google Scholar
  21. 21.
    G. Seeta Rama Raju, E. Pavitra, Y.H. Ko, J.S. Yu, J. Mater. Chem. 22, 31 (2012)CrossRefGoogle Scholar
  22. 22.
    P. Bindu, S. Thomas, J. Theor. Appl. Phys. 8, 4 (2014)CrossRefGoogle Scholar
  23. 23.
    Introduction to the Program FULLPROF RefinementGoogle Scholar
  24. 24.
    B.P. Singh, M. Maheshwary, P.V. Ramakrishna, S. Singh, V.K. Sonu, S. Singh, P. Singh, A. Bahadur, R.A. Singh, S.B. Rai, RSC Adv. 5, 69 (2015)Google Scholar
  25. 25.
    L.B. McCusker, R.B. Von Dreel, D.E. Cox, D. Loue, P. Scardi, J. Appl. Crystallogr. 32, 36–50 (1999)CrossRefGoogle Scholar
  26. 26.
    A. Marques, E. Leite, J. Varela, E. Longo, Nanoscale Res. Lett. 3, 4 (2008)CrossRefGoogle Scholar
  27. 27.
    A.P.A. Marques, F.V. Motta, E.R. Leite, P.S. Pizani, J.A. Varela, E. Longo, D.M.A. de Melo, J. Appl. Phys. 104, 4 (2008)CrossRefGoogle Scholar
  28. 28.
    A.K. Parchur, R.S. Ningthoujam, Dalton Trans. 40, 29 (2011)Google Scholar
  29. 29.
    A.K. Parchur, R.S. Ningthoujam, S.B. Rai, G.S. Okram, R.A. Singh, M. Tyagi, S.C. Gadkari, R. Tewari, R.K. Vatsa, Dalton Trans. 40, 29 (2011)Google Scholar
  30. 30.
    L. Li, Z. Leng, W. Zi, S. Gan, J. Electron. Mater. 43, 7 (2014)Google Scholar
  31. 31.
    S. Som, A.K. Kunti, V. Kumar, V. Kumar, S. Dutta, M. Chowdhury, S.K. Sharma, J.J. Terblans, H.C. Swart, J. Appl. Phys. 115, 19 (2014)CrossRefGoogle Scholar
  32. 32.
    M. Chowdhury, S.K. Sharma, RSC Adv. 5, 63 (2015)Google Scholar
  33. 33.
    Y.C. Chen, W.B. Hung, T.M. Chen, K.W. Sun, Res. Appl. 21, 7 (2013)Google Scholar
  34. 34.
    J. Singh, J. Manam, Ceram. Int. 42, 6 (2016)Google Scholar
  35. 35.
    S. Das, C.-Y. Yang, H.-C. Lin, C.-H. Lu, RSC Adv. 4, 87 (2014)Google Scholar
  36. 36.
    Z. Xia, S. Miao, M.S. Molokeev, M. Chen, Q. Liu, J. Mater. Chem. C 4, 6 (2016)Google Scholar
  37. 37.
    Y. Tian, B. Chen, R. Hua, N. Yu, B. Liu, J. Sun, L. Cheng, H. Zhong, X. Li, J. Zhang, B. Tian, H. Zhong, CrystEngComm 14, 5 (2012)Google Scholar
  38. 38.
    B. Tian, B. Chen, Y. Tian, X. Li, J. Zhang, J. Sun, H. Zhong, L. Cheng, S. Fu, H. Zhong, Y. Wang, X. Zhang, H. Xia, R. Hua, J. Mater. Chem. C 1, 12 (2013)CrossRefGoogle Scholar
  39. 39.
    G.S. Maciel, A. Biswas, P.N. Parsad, Opt. Commun. 178, 1–3 (2000)CrossRefGoogle Scholar
  40. 40.
    D.K. Mohanty, V.K. Rai, J. Disp. Technol. 9, 7 (2013)CrossRefGoogle Scholar
  41. 41.
    S. Chawla, M. Parvaz, V. Kumar, Z. Buch, N. J. Chem. 37, 12 (2013)CrossRefGoogle Scholar
  42. 42.
    B.S. Richards, Sol. Energy Mater. Sol. Cells 90, 8 (2006)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Applied PhysicsIndian Institute of Technology (Indian School of Mines)DhanbadIndia

Personalised recommendations