Temperature- and light-sensitive mechanism in metal/organic/n-GaN bio-hybrid temperature photodiode based on salmon DNA biomolecule

  • M. Siva Pratap ReddyEmail author
  • Peddathimula Puneetha
  • Jung-Hee LeeEmail author
  • Jaesool ShimEmail author
  • Ki-Sik Im


Temperature-based organic–inorganic photodiodes have recently become attractive applications in branches of science and technology with eco-friendly and hybrid concepts. Here, we describe the use of salmon DNA (SDNA) biomolecules as temperature and light sensors. We demonstrate the temperature- and light-sensitive mechanism of polarity switching in metal/organic/n-GaN bio-hybrid photodiodes based on salmon DNA-cetyltrimethylammonium chloride (SDNA-surfactant). The SDNA-surfactant/n-GaN bio-hybrid temperature photodiode (Bio-HTPD) shows negative bias shift of current (I)–voltage (V) plots by 0.70 and 0.42 V compared to zero-bias at temperatures of 275 and 300 K, respectively, under light illumination. However, the I–V plots of the Bio-HTPD moved towards positive bias by 0.08 V compared to zero-bias at 325 K under light irradiation. This phenomenon resulted in electrically negative photocurrents up to room temperature, which remarkably switched to positive photocurrents at above room temperature. The temperature variations are closely associated with charge activation and unidirectional transport in the SDNA-surfactant biomolecule. Moreover, the change from negative to positive photocurrent could be related to high electron–hole pair generation at higher transition temperature. The formation of an energy band model with thermal hopping is proposed, which explains the reasonable charge transport mechanism.



This work was supported by the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT and Fusion Research (2018R1D1A1B07040603) and BK21 Plus funded by the Ministry of Education (21A20131600011). Also, partially supported by the NRF Grant funded by the Korea government (No. NRF-2018R1D1A1B07049493).


  1. 1.
    E. Munoz, Phys. Status Solidi B 244, 2859–2877 (2007)CrossRefGoogle Scholar
  2. 2.
    T. Mueller, F. Xia, P. Avouris, Nat. Photonics 4, 297–301 (2010)CrossRefGoogle Scholar
  3. 3.
    X. Wang, Z. Cheng, K. Xu, H.K. Tsang, J.-B. Xu, Nat. Photonics 7, 888–891 (2013)CrossRefGoogle Scholar
  4. 4.
    B.A. Akimov, V.A. Bogoyavlenskiy, L.I. Ryabova, V.N. Vasilkov, Phys. Rev. B 61, 16045–16051 (2000)CrossRefGoogle Scholar
  5. 5.
    B. Arnaudov, T. Paskova, P.P. Paskov, B. Magnusson, E. Valcheva, B. Monemar, H. Lu, W.J. Schaff, H. Amano, I. Akasaki, Phys. Rev. B 69, 115216 (2004)CrossRefGoogle Scholar
  6. 6.
    R. Sreekumar, R. Jayakrishnan, C.S. Kartha, K.P. Vijayakumar, J. Appl. Phys. 100, 033707 (2006)CrossRefGoogle Scholar
  7. 7.
    P.-C. Wei, S. Chattopadhyay, M.-D. Yang, S.-C. Tong, J.-L. Shen, C.-Y. Lu, H.-C. Shih, L.-C. Chen, K.-H. Chen, Phys. Rev. B 81, 045306 (2010)CrossRefGoogle Scholar
  8. 8.
    M.S.P. Reddy, H. Park, J.-H. Lee, Opt. Mater. 76, 302–307 (2018)CrossRefGoogle Scholar
  9. 9.
    S.B. Mitta, M. Reddeppa, S. Vellampatti, S.R. Dugasani, S. Yoo, S. Lee, M.-D. Kim, S.H. Park, Sens. Actuators B 275, 137–144 (2018)CrossRefGoogle Scholar
  10. 10.
    Q. Sun, G. Subramanyam, L. Dai, M. Check, A. Campbell, R. Naik, J. Grote, Y. Wang, ACS Nano 3, 737–743 (2009)CrossRefGoogle Scholar
  11. 11.
    D. Porath, A. Bezryadin, S. de Vries, C. Dekker, Nature 403, 635–638 (2000)CrossRefGoogle Scholar
  12. 12.
    B.H. Mahmoud, C.L. Hexsel, I.H. Hamzavi, H.W. Lim, Photobiol. 84, 450–462 (2008)CrossRefGoogle Scholar
  13. 13.
    S. Delaney, J.K. Barton, J. Org. Chem. 68, 6475–6783 (2003)CrossRefGoogle Scholar
  14. 14.
    J.-S. Jang, Appl. Phys. Lett. 93, 081118 (2008)CrossRefGoogle Scholar
  15. 15.
    M.-L. Lee, T.S. Mue, F.W. Huang, J.H. Yang, J.K. Sheu, Opt. Express 19, 12658–12663 (2011)CrossRefGoogle Scholar
  16. 16.
    J. Wu, J. Appl. Phys. 106, 011101 (2009)CrossRefGoogle Scholar
  17. 17.
    S.-M. Kim, Y.-M. Yu, J.-H. Baek, S.-R. Jeon, H.-J. Ahn, J.-S. Jang, J. Electrochem. Soc. 154, H384–H388 (2007)CrossRefGoogle Scholar
  18. 18.
    N.A. Papanicolaou, M.V. Rao, J. Mittereder, W.T. Anderson, J. Vac. Sci. Technol. B 19, 261–267 (2001)CrossRefGoogle Scholar
  19. 19.
    S.M. Sze, Physics of Semiconductor Devices, 2nd edn. (Wiley, New York, 1981)Google Scholar
  20. 20.
    E.H. Rhoderick, T.H. Williams, Metal Semiconductor Contacts, 2nd edn. (Clarendon, Oxford, 1988)Google Scholar
  21. 21.
    M.S.P. Reddy, B.-J. Kim, J.-S. Jang, Opt. Express 22, 908–915 (2014)CrossRefGoogle Scholar
  22. 22.
    R.K. Gupta, A.A. Al-Ghamdi, O. Al-Hartomi, H. Hasar, F. El-Tantawy, F. Yakuphanoglu, Synth. Met. 162, 981–987 (2012)CrossRefGoogle Scholar
  23. 23.
    R.A. Marcus, N. Sutin, Biochim. Biophys. Acta 811, 265–322 (1985)CrossRefGoogle Scholar
  24. 24.
    M. Bixon, J. Jortner, Chem. Phys. 281, 393–408 (2002)CrossRefGoogle Scholar
  25. 25.
    J. Jortner, M. Bixton, A.A. Viotyuk, N. Rosch, J. Phys. Chem. 106, 7599–7606 (2002)CrossRefGoogle Scholar
  26. 26.
    C.H. Wohlgamuth, M.A. McWilliams, J.D. Slinker, Anal. Chem. 85, 8634–8640 (2013)CrossRefGoogle Scholar
  27. 27.
    M. Bixon, J. Jortnet, J. Am. Chem. Soc. 123, 12556–12567 (2001)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Electronics EngineeringKyungpook National UniversityDaeguSouth Korea
  2. 2.School of Mechanical EngineeringYeungnam UniversityGyeongsanSouth Korea
  3. 3.Advanced Material Research CenterKumoh National Institute of TechnologyGumiSouth Korea

Personalised recommendations