Lattice structure and microwave dielectric properties of [Mg0.5Si0.5]3+-doped LiAlO2 solid solution

  • Xue-Kai Lan
  • Jia-Pu Li
  • Jie Li
  • Zheng-Yu Zou
  • Gui-Fen Fan
  • Wen-Zhong Lu
  • Wen LeiEmail author


Microwave dielectric properties of low-permittivity LiAl1−x(Mg0.5Si0.5)xO2 (LAMS) (x = 0.02–0.2) ceramics synthesised through solid-state reaction route were investigated. All compositions show pure LiAlO2 phase with a P41212 space group at x ≤ 0.18. Microstructure and relative permittivity (εr) were greatly affected by the partial substitution of [Mg0.5Si0.5]3+ for Al3+ site. Bond energy decreased with increasing x value, thereby increasing the temperature coefficient of resonant frequency (τf) in the negative direction. Finally, the optimum microwave dielectric properties of LAMS (x = 0.02) sample were obtained at 1300 °C with εr = 6.17, Q × f = 53,300 GHz and τf = − 129 ppm/°C. Then CaTiO3 was added to the LAMS (x = 0.02) material to adjust the τf value to near zero.



This work was supported by the National Natural Science Foundation of China (NSFC-51572093 and 51772107), the Major Technological Innovation Projects in Hubei Province (2018AAA039), and the Research Projects Supported by the Equipment Development Department (1807WM0004). The authors are grateful to the Analytical and Testing Center, Huazhong University of Science and Technology, for SEM analyses.


  1. 1.
    H.W. Chen, H. Su, H.W. Zhang, T.C. Zhou, B.W. Zhang, J.F. Zhang, X.L. Tang, Low-temperature sintering and microwave dielectric properties of (Zn1−xCox)2SiO4 ceramics. Ceram. Int. 40(9), 14655–14659 (2014)CrossRefGoogle Scholar
  2. 2.
    L.X. Pang, D. Zhou, Modification of NdNbO4 microwave dielectric ceramic by Bi substitutions. J. Am. Ceram. Soc. 102(5), 2278–2282 (2019)CrossRefGoogle Scholar
  3. 3.
    M.T. Sebastian, Dielectric materials for wireless communication (Elsevier, Amsterdam, 2010)Google Scholar
  4. 4.
    L. Li, W.B. Hong, G.Y. Chen, X.M. Chen, High-performance (1 − x)(0.2B2O3–0.8 SiO2)–xTiO2 (x = 0.025–0.1) glass matrix composites for microwave substrate applications. J. Alloy. Compd. 774, 706–709 (2019)CrossRefGoogle Scholar
  5. 5.
    Y. Lai, H. Su, G. Wang, X. Tang, X. Liang, X. Huang, Y. Li, H. Zhang, C. Ye, X.R. Wang, Improved microwave dielectric properties of CaMgSi2O6 ceramics through CuO doping. J. Alloy. Compd. 772, 40–48 (2019)CrossRefGoogle Scholar
  6. 6.
    C. Li, H. Xiang, C. Yin, Y. Tang, Y. Li, L. Fang, Ultra-low loss microwave dielectric ceramic Li2Mg2TiO5 and low-temperature firing via B2O3 addition. J. Electron. Mater. 47(11), 6383–6389 (2018)CrossRefGoogle Scholar
  7. 7.
    H. Luo, L. Fang, H. Xiang, Y. Tang, C. Li, Two novel low-firing germanates Li2MGe3O8 (M = Ni, Co) microwave dielectric ceramics with spinel structure. Ceram. Int. 43(1), 1622–1627 (2017)CrossRefGoogle Scholar
  8. 8.
    H. Xiang, C. Li, Y. Tang, L. Fang, Two novel ultralow temperature firing microwave dielectric ceramics LiMVO6 (M = Mo, W) and their chemical compatibility with metal electrodes. J. Eur. Ceram. Soc. 37(13), 3959–3963 (2017)CrossRefGoogle Scholar
  9. 9.
    R. Zuo, Y. Xu, M. Shi, W. Li, L. He, A new series of low-temperature cofirable Li3Ba2La3(1 − x)Y3x(MoO4)8 microwave dielectric ceramics. J. Eur. Ceram. Soc. 38(14), 4677–4681 (2018)CrossRefGoogle Scholar
  10. 10.
    D. Zhou, L.X. Pang, D.W. Wang, Z.M. Qi, I.M. Reaney, High quality factor, ultralow sintering temperature Li6B4O9 microwave dielectric ceramics with ultralow density for antenna substrates. ACS Sustain. Chem. Eng. 6(8), 11138–11143 (2018)CrossRefGoogle Scholar
  11. 11.
    J. Chang, Z. Liu, M. Ma, Y. Li, Parallel preparation and properties investigation on Li2O–Nb2O5–TiO2 microwave dielectric ceramics. J. Eur. Ceram. Soc. 37(13), 3951–3957 (2017)CrossRefGoogle Scholar
  12. 12.
    Z. Fang, B. Tang, F. Si, S. Zhang, Temperature stable and high-Q microwave dielectric ceramics in the Li2Mg3−xCaxTiO6 system (x = 0.00–0.18). Ceram. Int. 43(2), 1682–1687 (2017)CrossRefGoogle Scholar
  13. 13.
    W. Li, L. Fang, Y. Tang, Y. Sun, C. Li, Microwave dielectric properties in the Li4+xTi5O12 (0 ≤ x ≤ 1.2) ceramics. J. Alloy. Compd. 701, 295–300 (2017)CrossRefGoogle Scholar
  14. 14.
    H. Zhou, X. Tan, J. Huang, N. Wang, G. Fan, X. Chen, Phase structure, sintering behavior and adjustable microwave dielectric properties of Mg1−xLi2xTixO1+2x solid solution ceramics. J. Alloy. Compd. 696, 1255–1259 (2017)CrossRefGoogle Scholar
  15. 15.
    H. Zuo, X. Tang, H. Zhang, Y. Lai, Y. Jing, H. Su, Low-dielectric-constant LiAlO2 ceramics combined with LBSCA glass for LTCC applications. Ceram. Int. 43(12), 8951–8955 (2017)CrossRefGoogle Scholar
  16. 16.
    G.R. Ren, J.Y. Zhu, L. Li, B. Liu, X.M. Chen, SrLa(R0.5Ti0.5)O4 (R = Mg, Zn) microwave dielectric ceramics with complex K2NiF4-type layered perovskite structure. J. Am. Ceram. Soc. 100(6), 2582–2589 (2017)CrossRefGoogle Scholar
  17. 17.
    B. Liu, L. Li, X.Q. Liu, X.M. Chen, Structural evolution of SrLaAl1−x(Zn0.5Ti0.5)xO4 ceramics and effects on their microwave dielectric properties. J. Mater. Chem. C 4(21), 4684–4691 (2016)CrossRefGoogle Scholar
  18. 18.
    X.Q. Song, W.Z. Lu, X.C. Wang, X.H. Wang, G.F. Fan, R. Muhammad, W. Lei, Sintering behaviour and microwave dielectric properties of BaAl2−2x(ZnSi)xSi2O8 ceramics. J. Eur. Ceram. Soc. 38(4), 1529–1534 (2018)CrossRefGoogle Scholar
  19. 19.
    A. Larson, R. Von Dreele, Gsas: general structure analysis system report LAUR 86-748 (Los Alamos National Laboratory, Los Alamos, NM, 1986)Google Scholar
  20. 20.
    B.H. Toby, EXPGUI, a graphical user interface for GSAS. J. Appl. Crystallogr. 34(2), 210–213 (2001)CrossRefGoogle Scholar
  21. 21.
    B. Hakki, P. Coleman, A dielectric resonator method of measuring inductive capacities in the millimeter range. IEEE Trans. Microw. Theory Tech. 8(4), 402–410 (1960)CrossRefGoogle Scholar
  22. 22.
    H. Yang, S. Zhang, Y. Chen, H. Yang, Y. Yuan, E. Li, Crystal chemistry, Raman spectra, and bond characteristics of trirutile-type Co0.5Ti0.5TaO4 microwave dielectric ceramics. Inorg. Chem. 58(1), 968–976 (2018)CrossRefGoogle Scholar
  23. 23.
    J. Zhang, H.L. Song, M. Qiao, T.J. Wang, X.F. Yu, X.L. Wang, The Raman effects in γ-LiAlO2 induced by low-energy Ga ion implantation. Nucl. Instrum. Meth. B 409, 72–75 (2017)CrossRefGoogle Scholar
  24. 24.
    Q. Hu, L. Lei, X. Jiang, Z.C. Feng, M. Tang, D. He, Li ion diffusion in LiAlO2 investigated by Raman spectroscopy. Solid State Sci. 37, 103–107 (2014)CrossRefGoogle Scholar
  25. 25.
    R.D. Shannon, Dielectric polarizabilities of ions in oxides and fluorides. J. Appl. Phys. 73(1), 348–366 (1993)CrossRefGoogle Scholar
  26. 26.
    B. Ullah, W. Lei, Q.S. Cao, Z.Y. Zou, X.K. Lan, X.H. Wang, W.Z. Lu, Structure and microwave dielectric behavior of A-site-doped Sr(1−1.5x)CexTiO3 ceramics system. J. Am. Ceram. Soc. 99(10), 3286–3292 (2016)CrossRefGoogle Scholar
  27. 27.
    Q. Liao, L. Li, Structural dependence of microwave dielectric properties of ixiolite structured ZnTiNb2O8 materials: crystal structure refinement and Raman spectra study. Dalton. Trans. 41(23), 6963–6969 (2012)CrossRefGoogle Scholar
  28. 28.
    P. Zhang, Y. Zhao, W. Haitao, Bond ionicity, lattice energy, bond energy and microwave dielectric properties of ZnZr(Nb1−xAx)2O8 (A = Ta, Sb) ceramics. Dalton. Trans. 44(38), 16684–16693 (2015)CrossRefGoogle Scholar
  29. 29.
    P. Zhang, Y. Zhao, X. Wang, The correlations between electronic polarizability, packing fraction, bond energy and microwave dielectric properties of Nd(Nb1−xSbx)O4 ceramics. J. Alloy. Compd. 644, 621–625 (2015)CrossRefGoogle Scholar
  30. 30.
    R.T. Sanderson, Electronegativity and bond energy. J. Am. Chem. Soc. 105(8), 2259–2261 (1983)CrossRefGoogle Scholar
  31. 31.
    R. Sanderson, Multiple and single bond energies in inorganic molecules. J. Inorg. Nucl. Chem. 30(2), 375–393 (1968)CrossRefGoogle Scholar
  32. 32.
    Y.R. Luo, Comprehensive handbook of chemical bond energies (CRC Press, Boca Raton, 2007)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Optical and Electronic InformationHuazhong University of Science and TechnologyWuhanPeople’s Republic of China
  2. 2.Key Lab of Functional Materials for Electronic Information (B)Ministry of EducationWuhanPeople’s Republic of China

Personalised recommendations