Advertisement

Existence of exchange bias and large coercivity in NiFe2O4/CoO core–shell structured nanoparticles

  • Rajendra Mohan
  • Mritunjoy Prasad Ghosh
  • Ravi Kant Choubey
  • Samrat MukherjeeEmail author
Article
  • 30 Downloads

Abstract

This article reports a systematic study on core–shell structured NiFe2O4/CoO nanocomposite systems synthesized by chemical co-precipitation route. Four samples with a generic chemical compound formula [(1 − x) NiFe2O4/x CoO: x = 0.00, 0.10, 0.20, 0.30] having different weight percentages of CoO component were prepared. The existence of cubic spinel nickel ferrite phase together with pure cobalt oxide phase was determined using x-ray diffraction patterns without any trace of impurity phases. The M–H response at 5 K exhibited an exchange bias in the range of 135–161 Oe for all nanocomposites together with large coercive field around 12.2 kOe. The nanocrystalline nickel ferrites exhibit low coercivity when capped with CoO of different weight percentages showed a massive coercivity along with exchange bias at 5 K due to strong interfacial spin coupling effect. This phenomenon pushed the superparamagnetic limit beyond room temperature even in smaller size. The exchange bias expectedly disappeared at room temperature hysteresis loops due to extremely weak interfacial spins coupling of both FiM/AFM components. It is observed that the saturation magnetization has decreased with increase of CoO weight percentage in nanocomposite systems.

Notes

References

  1. 1.
    W.H. Meiklejohn, C.P. Bean, Phys. Rev. B 102, 1413 (1956)CrossRefGoogle Scholar
  2. 2.
    W.H. Meiklejohn, C.P. Bean, Phys. Rev. B 105, 904 (1956)CrossRefGoogle Scholar
  3. 3.
    J. Nogues, I.K. Schuller, J. Magn. Magn. Mater. 192, 203 (1999)CrossRefGoogle Scholar
  4. 4.
    O. Iglesias, A. Labarta, X. Batlle, J. Nanosci. Nanotechnol. 8, 2761 (2008)Google Scholar
  5. 5.
    S. Laureti, S.Y. Suck, H. Haas, E. Prestat, O. Bourgeois, D. Givord, Phys. Rev. Lett. 108, 077205 (2012)CrossRefGoogle Scholar
  6. 6.
    D.W. Kavich, J.H. Dickerson, S.V. Mahajan, S.A. Hasan, J.H. Park, Phys. Rev. B 78, 174414 (2008)CrossRefGoogle Scholar
  7. 7.
    L. Del Bianco, D. Fiorani, A.M. Testa, E. Bonetti, L. Signorini, Phys. Rev. B 70, 052401 (2004)CrossRefGoogle Scholar
  8. 8.
    A. Ceylan, C.C. Baker, S.K. Hasanainand, S.I. Shah, J. Appl. Phys. 100, 034301 (2006)CrossRefGoogle Scholar
  9. 9.
    Sarveena, M. Singh, S.K. Sharma, AIP Conf. Proc. 1832, 050141 (2017)CrossRefGoogle Scholar
  10. 10.
    R. Mohan, M.P. Ghosh, S. Mukherjee, Mater. Res. Express 5, 035029 (2018)CrossRefGoogle Scholar
  11. 11.
    Aakash, A. Roychowdhury, D. Das, S. Mukherjee, Ceram. Inter. 42, 7742 (2016)CrossRefGoogle Scholar
  12. 12.
    S. Joshi, M. Kumar, S. Chhoker, A. Kumar, M. Singh, J. Magn. Magn. Mater. 426, 252 (2017)CrossRefGoogle Scholar
  13. 13.
    V. Skumryev, S. Stoyanov, Y. Zhang, G. Handipanayis, D. Givord, J. Norgues, Nature 423, 850 (2003)CrossRefGoogle Scholar
  14. 14.
    A.E. Berkowitz, K. Takano, J. Magn. Magn. Mater. 200, 552 (1999)CrossRefGoogle Scholar
  15. 15.
    W.J. Gong, W. Liu, D. Li, S. Guo, X.H. Liu, J.N. Feng, B. Li, G. Zhao, Z.D. Zhang, J. Appl. Phys. 109, 07D711 (2011)CrossRefGoogle Scholar
  16. 16.
    J.H. He, S.L. Yuan, S.Y. Yin, K.L. Liu, P. Li, C.H. Wang, L. Liu, J.Q. Li, Z.M. Tian, J. Magn. Magn. Mater. 322, 79–83 (2010)CrossRefGoogle Scholar
  17. 17.
    N.F. Martinez, G. Franceschin, T. Gaudisson, P. Beaunier, N. Yaacoub, J.M. Greneche, R. Valenzuela, S. Ammar, Part. Part. Syst. Charact. 1800290, 1–8 (2018)Google Scholar
  18. 18.
    R. Mohan, M.P. Ghosh, S. Mukherjee, Mater. Res. Express. 6, 056105 (2019)CrossRefGoogle Scholar
  19. 19.
    X. Zhao, S. Xu, L. Wang, X. Duan, F. Zhang, Nano Res. 3, 200–210 (2010)CrossRefGoogle Scholar
  20. 20.
    R. Mohan, M.P. Ghosh, S. Mukherjee, J. Magn. Magn. Mater. 458, 193 (2018)CrossRefGoogle Scholar
  21. 21.
    K.M. Batoo, D. Salah, G. Kumar, A. Kumar, M. Singh, M.A.E. Sadek, F.A. Mir, A. Imran, D.A. Jameel, J. Magn. Magn. Mater. 411, 91 (2016)CrossRefGoogle Scholar
  22. 22.
    C. Borgohain, D. Mishra, K.C. Sarma, P. Phukan, J. Appl. Phys. 112, 113905 (2012)CrossRefGoogle Scholar
  23. 23.
    K. Chakrabarti, B. Sarkar, V.D. Ashok, K. Das, S.S. Chaudhuri, A. Mitra, S.K. De, J. Appl. Phys. 115, 013906 (2014)CrossRefGoogle Scholar
  24. 24.
    K. Mazz, M. Usman, S. Karim, A. Mumtaz, S.K. Hasanain, M.F. Bertino, J. Appl. Phys. 105, 113917 (2009)CrossRefGoogle Scholar
  25. 25.
    A. Mumtaz, K. Maaz, B. Janjua, S.K. Hasanain, M.F. Bertino, J. Magn. Magn. Mater. 313, 266 (2007)CrossRefGoogle Scholar
  26. 26.
    A. Rostamnejadi, M. Venkatesan, H. Salamati, K. Ackland, H. Ghoslizadeh, P. Kameli, J.M.D. Coey, J. Appl. Phys. 121, 173902 (2017)CrossRefGoogle Scholar
  27. 27.
    D. Peddis, S. Laureti, M.V. Mansilla, E. Agostinelli, G. Varvaro, C. Cannas, D. Fiorani, Superlattices Microstruct. 46, 125 (2009)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Rajendra Mohan
    • 1
  • Mritunjoy Prasad Ghosh
    • 1
  • Ravi Kant Choubey
    • 2
  • Samrat Mukherjee
    • 1
    Email author
  1. 1.Department of PhysicsNational Institute of Technology PatnaPatnaIndia
  2. 2.Department of Applied Physics, Amity Institute of Applied Sciences (AIAS)Amity University, Noida Campus, Sector 125NoidaIndia

Personalised recommendations