Advertisement

Enhanced electrical properties in A-site K/Ce and B-site W/Cr co-substituted CaBi2Nb2O9 high temperature piezoelectric ceramic

  • Zhenning Chen
  • Xudong Li
  • Linsheng Sheng
  • Juan Du
  • Wangfeng Bai
  • Lili Li
  • Fei Wen
  • Peng ZhengEmail author
  • Wei Wu
  • Liang Zheng
Article
  • 31 Downloads

Abstract

A-site K/Ce and B-site W/Cr co-substituted CaBi2Nb2O9 ceramics were synthesized by a conventional solid-state reaction process. The structures, piezoelectricity and electrical conduction behaviors were investigated in detail. The Ca0.95(K1/2Ce1/2)0.05Bi2Nb1.99(W2/3Cr1/3)0.01O9 ceramic exhibited best properties with a high d33 (piezoelectric coefficient) of ~ 18.4 pC/N and a high TC (Curie temperature) of ~ 917 °C. In addition, the ceramic displayed an excellent thermal stability performance such that d33 remained 94% of its initial value even after annealing at 900 °C for 2 h. The planar electromechanical coupling factor was observed to increase from 9.00% at room temperature to 15.24% at 600 °C. Furthermore, a high electrical resistivity of 1.16 × 105 Ω cm at 600 °C and a good fatigue property were also achieved with this composition. The Ca0.95(K1/2Ce1/2)0.05Bi2Nb1.99(W2/3Cr1/3)0.01O9 ceramic was found to be a promising candidate for high-temperature piezoelectric applications.

Notes

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Nos. 51302056, 51502067), Key research and development projects of Zhejiang Province (2017C01056).

References

  1. 1.
    D. Araujo, A.P. Cuchiaro, J.D. Mcmillan, L.D. Scott, M.C. Scott, Nat. Mater. 374, 627–629 (1995)Google Scholar
  2. 2.
    H.X. Yan, H. Zhang, R. Ubic, M.J. Reece, J. Liu, Z. Shen, Z. Zhang, Adv. Mater. 17, 1261–1265 (2005)CrossRefGoogle Scholar
  3. 3.
    H.X. Yan, H. Zhang, M.J. Reece, Appl. Phys. Lett. 87, 651 (2005)Google Scholar
  4. 4.
    R.C. Turner, P.A. Fuierer, R.E. Newnham, T.R. Shrout, Appl. Acoust. 41, 299–324 (1995)CrossRefGoogle Scholar
  5. 5.
    R.E. Newnham, R.W. Wolfe, J.F. Dorrian, Mater. Res. Bull. 6, 1029–1039 (1971)CrossRefGoogle Scholar
  6. 6.
    E.C. Subbarao, J. Phys. Chem. Solids 23, 665–676 (1962)CrossRefGoogle Scholar
  7. 7.
    S. Swartz, W.A. Schulze, J.V. Biggers, Ferroelectrics 38, 765–768 (1981)CrossRefGoogle Scholar
  8. 8.
    H. Chen, F. Fu, J. Zhai, Jpn. J. Appl. Phys. 50, 050207 (2011)CrossRefGoogle Scholar
  9. 9.
    X.X. Tian, S.B. Qu, B. Wang, Sci. China Ser. B 54, 1552–1557 (2011)CrossRefGoogle Scholar
  10. 10.
    X.X. Tian, S.B. Qu, H.L. Du, Y. Li, Z. Xu, Chin. Phys. B 21, 37701–37705 (2012)CrossRefGoogle Scholar
  11. 11.
    C.M. Wang, S.J. Zhang, J.F. Wang, M.L. Zhao, C.L. Wang, Mater. Chem. Phys. 118, 21–24 (2009)CrossRefGoogle Scholar
  12. 12.
    C.M. Wang, J.F. Wang, S.J. Zhang, T.R. Shrout, Phys. Status Solidi RRL 3, 49–51 (2010)CrossRefGoogle Scholar
  13. 13.
    J. Chen, J. Yuan, S.M. Bao, Y.J. Wu, G. Liu, Q. Chen, D.Q. Xiao, J.G. Zhu, Ceram. Int. 43(6), 5002–5006 (2017)CrossRefGoogle Scholar
  14. 14.
    X.X. Zeng, F. Cao, Z.H. Peng, X.H. Xing, Ceram. Int. 44, 3069–3076 (2018)CrossRefGoogle Scholar
  15. 15.
    Z.H. Peng, Q. Che, Y.D. Wang, D.Q. Xin, D.Q. Xiao, J.G. Zhu, Mater. Lett. 107, 14–16 (2013)CrossRefGoogle Scholar
  16. 16.
    X.H. Xing, F. Cao, Z.H. Peng, Y. Xiang, Ceram. Int. 44(14), 17326–17332 (2018)CrossRefGoogle Scholar
  17. 17.
    Z.N. Chen, L.S. Sheng, X.D. Li, P. Zheng et al., Ceram. Int. 45, 6007–6011 (2019)Google Scholar
  18. 18.
    Z.Y. Shen, H.J. Sun, Y.X. Tang, Y.M. Li, S.J. Zhang, Mater. Res. Bull. 63, 129–133 (2015)CrossRefGoogle Scholar
  19. 19.
    C.B. Long, H.Q. Fan, M.M. Li, G.Z. Dong, Q. Li, Scr. Mater. 75, 70–73 (2014)CrossRefGoogle Scholar
  20. 20.
    C.B. Long, H.Q. Fan, M.M. Li, Dalton Trans. 42(10), 3561–3570 (2013)CrossRefGoogle Scholar
  21. 21.
    L. Sun, Q. Chen, D. Wu, J. Wu, J Alloys Compd. 625, 113 (2015)CrossRefGoogle Scholar
  22. 22.
    D.Q. Xin, Q. Chen, J.G. Wu, S.M. Bao, W. Zhang, D.Q. Xiao, J.G. Zhu, J. Electron. Mater. 45(7), 3597–3602 (2016)CrossRefGoogle Scholar
  23. 23.
    C.B. Long, H.Q. Fan, M.M. Li, P.R. Ren, Y. Cai, CrystEngComm 15, 10212–10221 (2013)CrossRefGoogle Scholar
  24. 24.
    H.X. Yan, C. Li, J. Zhou, L. He, Jpn. J. Appl. Phys. 40, 6501 (2014)CrossRefGoogle Scholar
  25. 25.
    C.M. Wang, J. Wang, S. Zhang, T.R. Shrout, J. Appl. Phys. 105, 463 (2009)Google Scholar
  26. 26.
    Z.H. Peng, Q. Chen, J.G. Wu, X.H. Zhu, D.Q. Xiao, J.G. Zhu, J Alloys Compd. 509(33), 8483–8486 (2011)CrossRefGoogle Scholar
  27. 27.
    G. Liu, D. Wang, C. Wu, J.G. Wu, Q. Chen, J. Am. Ceram. Soc. 102(4), 1794–1804 (2018)CrossRefGoogle Scholar
  28. 28.
    X.X. Tian, S.B. Qu, H. Ma, Z.B. Pei, B.K. Wang, J. Mater. Sci. 27(12), 13309–13313 (2016)Google Scholar
  29. 29.
    P. Xiao, Y. Guo, M. Tian, Q. Zheng, N. Jiang, X. Wu, Dalton Trans. 44, 17366–17380 (2015)CrossRefGoogle Scholar
  30. 30.
    Y. Shimakawa, Y. Kubo, Y. Nakagawa, S. Goto, T. Kamiyama, H. Asano, Phys. Rev. B 530, 69–74 (2000)Google Scholar
  31. 31.
    Q. Wang, H.Q. Fan, C.B. Long, J. Mater. Sci. 25(7), 2961–2968 (2014)Google Scholar
  32. 32.
    D.Y. Suárez, I.M. Reaney, W.E. Lee, J. Mater. Res. 16(11), 3139–3149 (2011)CrossRefGoogle Scholar
  33. 33.
    Z.H. Peng, Q. Chen, Y. Chen, D.Q. Xiao, J. Zhu, Mater. Res. Bull. 59, 125–130 (2014)CrossRefGoogle Scholar
  34. 34.
    J.G. Hou, Y.F. Qu, R. Vaish, K.B.R. Varma, D. Krsmanovic, R.V. Kumar, J. Am. Ceram. Soc. 93, 1414–1421 (2010)Google Scholar
  35. 35.
    G. Liu, J. Yuan, R. Nie, L.M. Jiang, Z. Tan, J.G. Zhu, Q. Chen, J Alloys Compd. 697, 380–387 (2017)CrossRefGoogle Scholar
  36. 36.
    S.M. Bao, Z.H. Peng, W.Y. Guang, C.Y. Li, Q. Chen, W. Zhang, D.Q. Xiao, J.G. Zhu, Ferrelectr. 458(1), 200–207 (2014)CrossRefGoogle Scholar
  37. 37.
    Z.H. Peng, X.X. Zeng, X. Yang, F. Cao, J.G. Zhu, Ceram. Int. 43, 1249–1255 (2017)CrossRefGoogle Scholar
  38. 38.
    G. Liu, C. Wu, Y. Chen, D.Y. Liang, B. Wang, J.G. Wu, Q. Chen, Ceram. Int. 44, 5880–5885 (2018)CrossRefGoogle Scholar
  39. 39.
    H.B. Chen, J.W. Zhai, Key Eng. Mater. 512, 1367–1371 (2012)CrossRefGoogle Scholar
  40. 40.
    A. Hussain, M.A. Qaiser, J. Zhang, S.T. Zhang, J. Am. Ceram. Soc. 100, 3522–3529 (2017)CrossRefGoogle Scholar
  41. 41.
    S.Y. Cho, G.P. Choi, S.D. Bu, J. Korean Phys. Soc. 70(10), 934–938 (2017)CrossRefGoogle Scholar
  42. 42.
    T.L. Zhao, C.M. Wang, C.L. Wang, Y.M. Wang, S.X. Dong, Mater. Sci. Eng. B 201, 51–56 (2015)CrossRefGoogle Scholar
  43. 43.
    Z.Y. Zhou, X. Dong, H. Yan, H. Chen, C. Mao, J. Appl. Phys. 100, 2421 (2006)Google Scholar
  44. 44.
    G. Zhi, G. Zhao, J. Electroceram. 31(1–2), 143–147 (2013)Google Scholar
  45. 45.
    H. Cheng, J. Appl. Phys. 56(6), 1831–1837 (1984)CrossRefGoogle Scholar
  46. 46.
    W.L. Warren, K. Vanheusden, D. Dimos, J. Am. Ceram. Soc. 79(2), 536–538 (2010)CrossRefGoogle Scholar
  47. 47.
    J. Robertson, C. Chen, W.L. Warren, C.D. Guttleben, Appl. Phys. Lett. 69, 1704–1706 (1996)CrossRefGoogle Scholar
  48. 48.
    I. Coondoo, A.K. Jha, S.K. Agarwal, J. Eur. Ceram. Soc. 27(1), 253–260 (2007)CrossRefGoogle Scholar
  49. 49.
    Y. Tang, Z.Y. Shen, Q. Du et al., J. Eur. Ceram. Soc. 38(16), 5348–5353 (2018)CrossRefGoogle Scholar
  50. 50.
    D.C. Lupascu, U. Rabe, Phys. Rev. Lett. 89(18), 187601 (2002)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.College of Electronics and InformationHangzhou Dianzi UniversityHangzhouChina
  2. 2.School of Materials Sciences and EngineeringLiaocheng UniversityLiaochengChina
  3. 3.College of Materials and Environmental EngineeringHangzhou Dianzi UniversityHangzhouChina

Personalised recommendations