Excitation wavelength and Eu3+/Tb3+ content ratio dependent tunable photoluminescence from NaSrBO3:Eu3+/Tb3+ phosphor

  • A. K. BedyalEmail author
  • D. D. Ramteke
  • Vinay KumarEmail author
  • H. C. SwartEmail author


A series of single doped (Eu3+ or Tb3+) and codoped (Eu3+ and Tb3+) phosphors were synthesized by solution combustion method. The single doped NaSrBO3:Tb3+ and NaSrBO3:Eu3+ emit green and red emission due to the characteristic 4f–4f transition of the Tb3+ and Eu3+ ions, respectively, under respective excitation wavelengths. Whereas, under Tb3+ excitation, the co-doped NaSrBO3:Tb3+/Eu3+ phosphors showed tunable emission upon varying the Eu3+/Tb3+ content ratio ascribed due to the energy transfer from Tb3+ to Eu3+ ions. Instead of this the emission spectrum of the codoped phosphors also exhibited strong dependence on the excitation wavelength in the range from 240 to 394 nm. The shift in the emission color (green–yellow–red) with increasing excitation wavelength, had been attributed to the presence of multiple states of Eu3+ and Tb3+ ions in the material, that become active at different excitation wavelength. The energy transfer mechanism and luminescence dynamics were investigated in the framework of the lifetime of the excited states of Eu3+ and Tb3+. The results imply that the present phosphor with multicolor emission might be promising for optoelectronic applications.



This work is based on the research supported by the South African Research Chairs Initiative of the Department of Science and Technology (84415), Republic of South Africa and the National Research Foundation of South Africa. Financial assistance from the University of the Free State is gratefully acknowledged. The Edinburgh Instruments photoluminescence system used for this work was supported in part by the National Research Foundation of South Africa (Grant Number 93214, R.E. Kroon).


  1. 1.
    X. Liu, J. Qiu, Chem. Soc. Rev. 44, 8714 (2015)CrossRefGoogle Scholar
  2. 2.
    J. McKittrick, L.E. Shea-Rohwer, J. Am. Ceram. Soc. 97, 1327 (2014)CrossRefGoogle Scholar
  3. 3.
    M. Shang, C. Li, J. Lin, Chem. Soc. Rev. 43, 1372 (2014)CrossRefGoogle Scholar
  4. 4.
    B.S. Nakamura, M.R. Krames, Proc. IEEE 101, 2211 (2013)CrossRefGoogle Scholar
  5. 5.
    R. Cao, H. Xiao, F. Zhang, Z. Luo, T. Chen, W. Li, P. Liu, J. Lumin. 208, 350 (2019)CrossRefGoogle Scholar
  6. 6.
    G. Liu, B. Jacquier, Spectroscopic Properties of Rare Earths in Optical Materials (Springer, New York, 2005)Google Scholar
  7. 7.
    R. Cao, J. Mater. Sci.: Mater. Electron. 30, 2327 (2019)Google Scholar
  8. 8.
    R. Cao, C. Liao, F. Xiao, G. Zheng, W. Hu, Y. Guo, Y. Ye, Dyes Pigments 149, 574 (2018)CrossRefGoogle Scholar
  9. 9.
    F. Xie, J. Li, Z. Dong, D. Wen, J. Shi, J. Yan, M. Wu, RSC Adv. 5, 59830 (2015)CrossRefGoogle Scholar
  10. 10.
    J. Zhou, Z. Xia, J. Mater. Chem. C 2, 6978 (2014)CrossRefGoogle Scholar
  11. 11.
    D. Qin, W. Tang, RSC Adv. 7, 2494 (2016)CrossRefGoogle Scholar
  12. 12.
    B. Zhang, H. Zou, H. Guan, Y. Dai, Y. Song, X. Zhou, Y. Sheng, CrystEngComm (2016)Google Scholar
  13. 13.
    W.M. Yen, S. Shionoya, H. Yamamoto, Phosphor Handbook (CRC Press, Boca Raton, 2007)Google Scholar
  14. 14.
    F. Yang, Y. Liang, M. Liu, X. Li, M. Zhang, N. Wang, Opt. Laser Technol. 46, 14 (2013)CrossRefGoogle Scholar
  15. 15.
    V. Kumar, A.K. Bedyal, S.S. Pitale, O.M. Ntwaeaborwa, H.C. Swart, J. Alloys Compd. 554, 214 (2013)CrossRefGoogle Scholar
  16. 16.
    D. Chikte, S.K. Omanwar, S.V. Moharil, J. Lumin. 142, 180 (2013)CrossRefGoogle Scholar
  17. 17.
    W.-R. Liu, C.-H. Huang, C.-P. Wu, Y.-C. Chiu, Y.-T. Yeh, T.-M. Chen, J. Mater. Chem. 21, 6869 (2011)CrossRefGoogle Scholar
  18. 18.
    X.G. Zhang, L.Y. Zhou, M.L. Gong, ECS J. Solid State Sci. Technol. 2, R83 (2013)CrossRefGoogle Scholar
  19. 19.
    A.K. Bedyal, V. Kumar, V.K. Singh, F. Singh, S.P. Lochab, O.M. Ntwaeaborwa, H.C. Swart, Nucl. Instrum Methods Phys. Res. B 351, 27 (2015)CrossRefGoogle Scholar
  20. 20.
    A.K. Bedyal, V. Kumar, V. Sharma, F. Singh, S.P. Lochab, O.M. Ntwaeaborwa, H.C. Swart, J. Mater. Sci. 49, 6404 (2014)CrossRefGoogle Scholar
  21. 21.
    F. Yang, Y. Liang, Y. Lan, W. Gao, M. Liu, X. Li, W. Huang, Y. Li, Z. Xia, Mater. Lett. 83, 59 (2012)CrossRefGoogle Scholar
  22. 22.
    A.K. Bedyal, V. Kumar, H.C. Swart, J. Lumin. 187, 499 (2017)CrossRefGoogle Scholar
  23. 23.
    H. Yi, L. Wu, L. Wu, L. Zhao, Z. Xia, Y. Zhang, Y. Kong, J. Xu, Inorg. Chem. 55, 6487 (2016)CrossRefGoogle Scholar
  24. 24.
    W.Q. Yang, H.G. Liu, M. Gao, Y. Bai, J.T. Zhao, X.D. Xu, B. Wu, W.C. Zheng, G.K. Liu, Y. Lin, Acta Mater. 61, 5096 (2013)CrossRefGoogle Scholar
  25. 25.
    D. J. M. Bevan and E. Summerlivve, Handbook on the Physics and Chemistry of Rare Earths (1979)Google Scholar
  26. 26.
    G. Blasse, Phys. Lett. A 28, 444 (1968)CrossRefGoogle Scholar
  27. 27.
    R. Reisfeld, J. Chem. Phys. 56, 1698 (1972)CrossRefGoogle Scholar
  28. 28.
    L.G. Van Uitert, J. Electrochem. Soc. 114, 1048 (1967)CrossRefGoogle Scholar
  29. 29.
    J. Hernández-Andrés, R.L. Lee, J. Romero, Appl. Opt. 38, 5703 (1999)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of PhysicsUniversity of the Free StateBloemfonteinSouth Africa
  2. 2.FunGlass – Centre for Functional and Surface Functionalized GlassAlexander Dubček University of TrenčínTrenčínSlovakia
  3. 3.Department of Physics and Astronomical SciencesCentral University of JammuJammuIndia

Personalised recommendations