Structural properties and electrochemical performance V-doping Li2Ti3O7 and Li4Ti5O12 anode materials

  • S. Demirel
  • S. AltinEmail author


Li2Ti3−xVxO7 and Li4Ti5−xVxO12 (x = 0–0.1) are successfully fabricated using the conventional solid-state reaction technique. The battery performance of the cells showed that the highest capacity of Li2Ti3−xVxO7 was obtained for the sample of x = 0.025 which has 153 mAh/g and 123 mAh/g for 1 and 1000, respectively. In addition to this, the best capacity of the cell of Li4Ti4.5V0.5O12 was found as 202 mAh/g for the first cycle and it was decreased to 194 mAh/g for 1000 cycles. To understand the capacity fade mechanism, we performed ex situ structural experiments and it is found that the unit cell of the crystalline phase is directly affected to battery performance. We concluded that in this study the V-substituted samples have a potential for next-generation battery fabrication since it may cause the increase of the stability of the cells.



Dr. S. Demirel was supported by TUBITAK 2214-A International scholarship program for studying in the University of Illinois at Urbana-Champaign. Dr. Serkan Demirel wants to thank Prof. Paul V. Braun for using the laboratories. This project was supported by Inonu University Research Council with a contract number of BAP-2015/85.


  1. 1.
    J.B. Goodenough, K.-S. Park, The Li-ion rechargeable battery: a perspective. J. Am. Chem. Soc. 135, 1167–1176 (2013)CrossRefGoogle Scholar
  2. 2.
    X. Su, Q.L. Wu, X. Zhan, J. Wu, S. Wei, Z. Guo, Advanced titania nanostructures and composites for lithium ion battery. J. Mater. Sci. 47, 2519–2534 (2012)CrossRefGoogle Scholar
  3. 3.
    Y. Li, X. Hou, Y. Li, Q. Ru, S. Hu, K.-H. Lam, The design and synthesis of polyhedral Ti-doped Co3O4 with enhanced lithium-storage properties for Li-ion batteries. J. Mater. Sci. 27, 11439–11446 (2016)Google Scholar
  4. 4.
    J.B. Gieu, V. Winkler, C. Courreges, L. El Ouatani, C. Tessier, H. Martinez, New insights into the characterization of the electrode/electrolyte interfaces within LiMn2O4/Li4Ti5O12 cells, by X-ray photoelectron spectroscopy, scanning Auger microscopy and time-of-flight secondary ion mass spectrometry. J. Mater. Chem. A 5, 15315–15325 (2017)CrossRefGoogle Scholar
  5. 5.
    J. Wang, S. Dong, H. Li, Z. Chen, S. Jiang, L. Wu, X. Zhang, Facile synthesis of layered Li4Ti5O12-Ti3C2Tx (MXene) composite for high-performance lithium ion battery. J. Electroanal. Chem. 810, 27–33 (2018)CrossRefGoogle Scholar
  6. 6.
    W. Li, A. Wei, L. Zhang, X. Li, X. Bai, Z. Liu, Structure and enhanced electrochemical performance of the CaF2-modified Li4Ti5O12 anode material. J. Electroanal. Chem. 791, 196–203 (2017)CrossRefGoogle Scholar
  7. 7.
    S. Dong, X. Wang, L. Shen, H. Li, J. Wang, P. Nie, J. Wang, X. Zhang, Trivalent Ti self-doped Li4Ti5O12: a high performance anode material for lithium-ion capacitors. J. Electroanal. Chem. 757, 1–7 (2015)CrossRefGoogle Scholar
  8. 8.
    T. Li, L. Shao, X. Lin, M. Shui, K. Wu, D. Wang, N. Long, Y. Ren, J. Shu, High rate Li4Ti5O12@C anode material fabricated by a facile carbon coating method. J. Electroanal. Chem. 722, 54–59 (2014)CrossRefGoogle Scholar
  9. 9.
    J. Shuangze, Z. Junying, W. Wenwen, H. Yan, F. Zerong, Z. Zhongtai, T. Zilong, Preparation and effects of Mg-doping on the electrochemical properties of spinel Li4Ti5O12 as anode material for lithium ion battery. Mater. Chem. Phys. 123, 510–515 (2010)CrossRefGoogle Scholar
  10. 10.
    P. Yang, Z. Wu, Y. Jiang, Z. Pan, W. Tian, L. Jiang, L. Hu, Fractal (NixCo1−x)9Se8 nanodendrite arrays with highly exposed \( (01\bar{1}) \)(011) surface for wearable, all-solid-state supercapacitor. Adv. Energy Mater. 8, 1801392 (2018)CrossRefGoogle Scholar
  11. 11.
    Y. Song, Y. Li, L. Zhu, Z. Pan, Y. Jiang, P. Wang, Y.-N. Zhou, F. Fang, L. Hu, D. Sun, CuGaS2 nanoplates: a robust and self-healing anode for Li/Na ion batteries in a wide temperature range of 268–318K. Mater. Chem. A 6, 1086–1093 (2018)CrossRefGoogle Scholar
  12. 12.
    Z. Pan, Y. Jiang, P. Yang, Z. Wu, W. Tian, L. Liu, Y. Song, Q. Gu, D. Sun, L. Hu, In situ growth of layered bimetallic ZnCo hydroxide nanosheets for high-performance all-solid-state pseudocapacitor. ACS Nano 27, 2968–2979 (2018)CrossRefGoogle Scholar
  13. 13.
    G. Xu, P. Han, S. Dong, H. Liu, G. Cui, L. Chen, Li4Ti5O12-based energy conversion and storage systems: status and prospects. Coord. Chem. Rev. 343, 139–184 (2017)CrossRefGoogle Scholar
  14. 14.
    C. Han, Y.-B. He, M. Liu, B. Li, Q.-H. Yang, C.-P. Wong, F. Kang, A review of gassing behavior in Li4Ti5O12-based lithium ion batteries. J. Mater. Chem. A 5, 6368–6381 (2017)CrossRefGoogle Scholar
  15. 15.
    B. Zhao, R. Ran, M. Liu, Z. Shao, A comprehensive review of Li4Ti5O12-based electrodes for lithium-ion batteries: the latest advancements and future perspectives. Mater. Sci. Eng. R 98, 1–71 (2015)CrossRefGoogle Scholar
  16. 16.
    Y. Ding, G.R. Li, C.W. Xiao, X.P. Gao, Insight into effects of graphene in Li4Ti5O12/carbon composite with high rate capability as anode materials for lithium ion batteries. Electrochim. Acta 102, 282–289 (2013)CrossRefGoogle Scholar
  17. 17.
    N.A. Alias, M.Z. Kufian, L.P. Teo, S.R. Majid, A.K. Arof, Synthesis and characterization of Li4Ti5O12. J. Alloys Compd. 486, 645–648 (2009)CrossRefGoogle Scholar
  18. 18.
    C.P. Fonseca, M.A. Bellei, F.A. Amaral, S.C. Canobre, S. Neves, Synthesis and characterization of LiMxMn2−xO4 (M=Al, Bi and Cs ions) films for lithium ion batteries. Energ. Convers. Manage. 50, 1556–1562 (2009)CrossRefGoogle Scholar
  19. 19.
    Z. Wang, G. Xie, L. Gao, Concentration dependence of luminescent properties for Sr2TiO4:Eu3+ red phosphor and its charge compensation. J. Nanomater. 11, 1–7 (2012)Google Scholar
  20. 20.
    H. Ge, L. Chen, W. Yuan, Y. Zhang, Q. Fan, H. Osgood, D. Matera, X.-M. Song, G. Wu, Unique mesoporous spinel Li4Ti5O12 nanosheets as anode materials for lithium-ion batteries. J. Power Sources 297, 436–441 (2015)CrossRefGoogle Scholar
  21. 21.
    B. Tang, A. Li, Y. Tong, H. Song, X. Chen, J. Zhou, Z. Ma, Carbon-coated Li4Ti5O12 tablets derived from metal-organic frameworks as anode material for lithium-ion batteries. J. Alloy. Compd. 708, 6–13 (2017)CrossRefGoogle Scholar
  22. 22.
    M.V. Thournout, L. Monconduit, C. Villevieille, J. Olivier-Fourcade, J.-C. Jumas, C. Tessier, High voltage negative active material for a rechargeable lithium battery, US Patent: US8628694 B2, 2014Google Scholar
  23. 23.
    A. Orera, M.T. Azcondo, F. García-Alvarado, J. Sanz, I. Sobrados, J.R. Carvajal, U. Amador, Insight into ramsdellite Li2Ti3O7 and its proton-exchange derivative. Inorg. Chem. 48, 7659–7666 (2009)CrossRefGoogle Scholar
  24. 24.
    D. Wiedemann, S. Nakhal, A. Franz, M. Lerch, Lithium diffusion pathways in metastable ramsdellite-like Li2Ti3O7 from high-temperature neutron diffraction. Solid State Ionics 293, 37–43 (2016)CrossRefGoogle Scholar
  25. 25.
    M.V. Thournout, M. Womes, J. Olivier-Fourcade, J.-C. Jumas, Effect of the substitution Ti/(Fe, Ni) on the electrochemical properties of Li2Ti3O7 as electrode materials for Li-ion accumulators. J. Phys. Chem. Solids 67, 1355–1358 (2006)CrossRefGoogle Scholar
  26. 26.
    C. Villevieille, M.V. Thournout, J. Scoyer, C. Tessier, J. Olivier-Fourcade, J.-C. Jumas, L. Monconduit, Carbon modified Li2Ti3O7 ramsdellite electrode for Li-ion batteries. Electrochim. Acta 55, 7080–7084 (2010)CrossRefGoogle Scholar
  27. 27.
    S. Saxsena, A. Sil, Role of calcination atmosphere in vanadium doped Li4Ti5O12 for lithium ion battery anode material. Mater. Res. Bull. 96, 449–457 (2017)CrossRefGoogle Scholar
  28. 28.
    C. Liu, Z.G. Neale, G. Cao, Understanding electrochemical potentials of cathode materials in rechargeable batteries. Mater. Today 19, 109–123 (2016)CrossRefGoogle Scholar
  29. 29.
    T.-F. Yi, J. Shu, Y.-R. Zhu, X.-D. Zhu, C.-B. Yue, A.-N. Zhou, R.-S. Zhu, Highperformance Li4Ti5−xVxO12 (0 ≤ x ≤ 0.3) as an anode material for secondary lithiumion battery. Electrochim. Acta 54, 7464–7470 (2009)CrossRefGoogle Scholar
  30. 30.
    A.R. Denton, N.W. Ashcroft, Vegard’s law. Phys. Rev. A 43, 3161 (1991)CrossRefGoogle Scholar
  31. 31.
    A. Nakrela, N. Benramdane, A. Bouzidi, Z. Kebbab, M. Medles, C. Mathieu, Site location of Al-dopant in ZnO lattice by exploiting the structural and optica characterisation of ZnO: Al thin films. Results Phys. 6, 133–138 (2016)CrossRefGoogle Scholar
  32. 32.
    Y.K. Hong, Y.J. Paig, D.G. Agresti, T.D. Shelfer, Synthesis and characterization of modified barium ferrite particles. J. Appl. Phys. 61, 3872–3874 (1987)CrossRefGoogle Scholar
  33. 33.
    C. Chen, R. Agrawal, C. Wang, High performance Li4Ti5O12/Si composite anodes for Li-ion batteries. Nanomaterials 5, 1469–1480 (2015)CrossRefGoogle Scholar
  34. 34.
    M. Wagemaker, E.R.H. van Eck, A.P.M. Kentgens, F.M. Mulder, Li-ion diffusion in the equilibrium nanomorphology of spinel Li4+xTi5O12. J. Phys. Chem. B 113, 224–230 (2009)CrossRefGoogle Scholar
  35. 35.
    R.N. Neelameggham, S. Alam, H. Oosterhof, A. Jha, S. Wang, Rare Metal Technology (Wiley, Canada, 2014)Google Scholar
  36. 36.
    P.L. Holland, Electronic structure and reactivity of three-coordinate iron complexes. Acc. Chem. Res. 41, 905–914 (2008)CrossRefGoogle Scholar
  37. 37.
    C.R. Fell, M. Chi, Y.S. Meng, J.L. Jones, In situ X-ray diffraction study of the lithium excess layered oxide compound Li[Li0.2Ni0.2Mn0.6]O2 during electrochemical cycling. Solid State Ion. 207, 44–49 (2012)CrossRefGoogle Scholar
  38. 38.
    T.R. Crompton, Battery Reference Book (Elsevier, Oxford, 1990)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Electric and Energy DepartmentIgdir UniversityIgdirTurkey
  2. 2.Physics DepartmentInonu UniversityMalatyaTurkey

Personalised recommendations