Advertisement

A new co-solvent assisted CuSCN deposition approach for better coverage and improvement of the energy conversion efficiency of corresponding mixed halides perovskite solar cells

  • Azam Khorasani
  • Maziar MarandiEmail author
  • Azam Iraji zad
  • Nima Taghavinia
Article
  • 59 Downloads

Abstract

In this research, inorganic copper thiocyanate (CuSCN) hole transport layer (HTL) was applied in conventional structure of perovskite solar cells (PSCs). Besides, mixed halides perovskite (Cs0.05(MA0.17FA0.83)0.95Pb(I0.83Br0.17)3) was utilized as the light absorbing layer and deposited on FTO/compact TiO2 substrates through a one-step coating method in ambient condition. The mentioned perovskite is more stable against high temperature, high irradiation and humidity compared to commonly applied MAPbI3 perovskite. Nevertheless, the CuSCN could not be well dissolved in usual dipropyl sulfide solution and should be deposited for several times to achieve suitable thickness, this could reduce the quality of CuSCN layer and corresponding interfaces with the other layers. Here, Acetonitrile was applied as a co-solvent to increase the CuSCN concentration in mixed solvent. Consequently, the proper thickness was achieved for just one step of spin coating process. In addition, the CuSCN layer seemed smooth and pinholes free and the interfaces were well-formed. The PSCs with CuSCN HTLs prepared by usual low concentration CUSCN solution were also fabricated and characterized. The results show that the PSCs with improved CuSCN layer deposited from the acetonitrile assisted solution demonstrated a power conversion efficiency (PCE) 11%. This value was nearly close to that of the reference cell with Spiro-OMeTAD organic HTL. The corresponding stabilities were also comparable according to the carried out measurements. In addition, the PCE was increased about 45% compared to the optimized situation of the PSCs with CuSCN layer prepared from low concentration CuSCN solution.

Notes

References

  1. 1.
    J. Burschka et al., Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature 499, 316–319 (2013)CrossRefGoogle Scholar
  2. 2.
    M. Saliba, J.-P. Correa-Baena, C.M. Wolff, M. Stolterfoht, N. Phung, S. Albrecht, D. Neher, A. Abate, How to make over 20% efficient perovskite solar cells in regular (n–i–p) and inverted (p–i–n) architectures. Chem. Mater. 30, 4193–4201 (2018)CrossRefGoogle Scholar
  3. 3.
    A. Kojima, K. Teshima, Y. Shirai, T. Miyasaka, Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 131, 6050–6051 (2009)CrossRefGoogle Scholar
  4. 4.
    H. Tan et al., Efficient and stable solution-processed planar perovskite solar cells via contact passivation. Science 355, 722–726 (2017)CrossRefGoogle Scholar
  5. 5.
    A. Khorasani, M. Marandi, A. Iraji Zad, N. Taghavinia, Application of combinative TiO2 nanorods and nanoparticles layer as the electron transport film in highly efficient mixed halides perovskite solar cells. Electrochim. Acta 297, 1071–1078 (2019)CrossRefGoogle Scholar
  6. 6.
    N.-G. Park, Perovskite Solar Cells: An Emerging Photovoltaic Technology (Elsevier, Amsterdam, 2014)Google Scholar
  7. 7.
    J.-H. Im, I.-H. Jang, N. Pellet, M. Grätzel, N.-G. Park, Growth of CH3NH3PbI3 cuboids with controlled size for high-efficiency perovskite solar cells. Nat. Nanotechnol. 9(11), 927–932 (2014)CrossRefGoogle Scholar
  8. 8.
    G. Niu, X. Guo, L. Wang, Review of recent progress in chemical stability of perovskite solar cells. J. Mater. Chem. A 3, 8970–8980 (2014)CrossRefGoogle Scholar
  9. 9.
    M. Saliba et al., Cesium-containing triple cation perovskite solar cells: improved stability, reproducibility and high efficiency. Energy Environ. Sci. 9, 1989–1997 (2016)CrossRefGoogle Scholar
  10. 10.
    W. Rehman, D.P. McMeekin, J.B. Patel, R.L. Milot, M.B. Johnston, H.J. Snaith, L.M. Herz, Photovoltaic mixed-cation lead mixed-halide perovskites: links between crystallinity, photo-stability and electronic properties. Energy Environ. Sci. 10, 361 (2017)CrossRefGoogle Scholar
  11. 11.
    D. Liu, T.L. Kelly, Perovskite solar cells with a planar heterojunction structure prepared using room-temperature solution processing techniques. Nat. Photon. 8, 133–138 (2014)CrossRefGoogle Scholar
  12. 12.
    P. Ghosh, S. Senthilarasu, T. Nixon, S. Krishnamurthy, Influence of Nanostructures in Perovskite Solar Cells (Elsevier, Amsterdam, 2016)CrossRefGoogle Scholar
  13. 13.
    S. Feng et al., Fabrication of TiO2 nanorods/nanoparticles mixed phase structure via a simple dip-coating method and its application in perovskite solar cells. Mater. Sci. 29, 16903–16910 (2018)Google Scholar
  14. 14.
    T. Zhu, S.-P. Gao, The stability, electronic structure, and optical property of TiO2 polymorphs. J. Phys. Chem. C 118, 11385–11396 (2014)CrossRefGoogle Scholar
  15. 15.
    E. Juarez-Perez, M. Wubler, F. Fabregat-Santiago, K. Lakus-Wollny, E. Mankel, T. Mayer, W. Jaegermann, I. Mora-Sero, Role of the selective contacts in the performance of lead halide perovskite solar cells. J. Phys. Chem. Lett. 5(4), 680–685 (2014)CrossRefGoogle Scholar
  16. 16.
    K. Lu, Y. Lei, R. Qi, J. Liu, X. Yang, Z. Jia, R. Liu, Y. Xiangb, Z. Zheng, Fermi level alignment by copper doping for efficient ITO/perovskite junction solar cells. R. Soc. Chem. 5(48), 25211–25219 (2013)Google Scholar
  17. 17.
    S. Seok, M. Grätzel, N.-G. Park, Methodologies toward highly efficient perovskite solar cells. Small 14, 1704177 (2018)CrossRefGoogle Scholar
  18. 18.
    A. Abate et al., Lithium salts as “redox active” p-type dopants for organic semiconductors and their impact in solid-state dye-sensitized solar cells. Phys. Chem. Chem. Phys. 15, 2572 (2013)CrossRefGoogle Scholar
  19. 19.
    J. Liu, Y. Wu, C. Qin et al., A dopant-free hole-transporting material for efficient and stable perovskite solar cells. Energy Environ. Sci. 7(9), 2963–2967 (2014)CrossRefGoogle Scholar
  20. 20.
    R.S. Sanchez, E.M. Marza, Light-induced effects on Spiro-OMeTAD films and hybrid lead halide perovskite solar cells. Sol. Energy Mater. Sol. Cells 03, 024 (2016)Google Scholar
  21. 21.
    A.K. Jena, Y. Numata, M. Ikegami, T. Miyasaka, Notorious role of spiro-OMeTAD in performance deterioration of perovskite solar cells at high temperature and reuse of the perovskite films to avoid Pb-waste. J. Mater. Chem. A 6, 2219–2230 (2018)CrossRefGoogle Scholar
  22. 22.
    J.A. Christians, R.C.M. Fung, P.V. Kamat, An inorganic hole conductor for organo-lead halide perovskite solar cells Improved hole conductivity with copper iodide. J. Am. Chem. Soc. 136, 758–764 (2014)CrossRefGoogle Scholar
  23. 23.
    K. Cao, Z. Zuo, J. Cui, Y. Shen, T. Moehl, S.M. Zakeeruddin, M. Grätzel, M. Wang, Efficient screen printed perovskite solar cells based on mesoscopic TiO2/Al2O3/NiO/carbon architecture. Nano Energy 17, 171–179 (2015)CrossRefGoogle Scholar
  24. 24.
    C. Zuo, L. Ding, Solution-processed Cu2O and CuO as hole transport materials for efficient perovskite solar cells. Small 11, 5528–5532 (2015)CrossRefGoogle Scholar
  25. 25.
    M. Jung, Y.C. Kim, N.J. Jeon, W.S. Yang, J. Seo, J.H. Noh, S. Seok, Thermal stability of CuSCN hole conductor-based perovskite solar cells. Chemsuschem 9(18), 2592–2596 (2016)CrossRefGoogle Scholar
  26. 26.
    J. Chen, N.-G. Park, Inorganic hole transporting materials for stable and high efficiency perovskite solar cells. J. Phys. Chem. C 122(25), 14039–14063 (2018)CrossRefGoogle Scholar
  27. 27.
    M. Kim, S. Park, J. Jeong, D. Shin, J. Kim, S.H. Ryu, K.S. Kim, Y. Yi, H. Lee, Band-tail transport of CuSCN: origin of hole extraction enhancement in organic photovoltaics. J. Phys. Chem. Lett 7(14), 2856–2861 (2016)CrossRefGoogle Scholar
  28. 28.
    Y. Li, H. Li, C. Zhong, G. Sini, J.-L. Brédas, Characterization of intrinsic hole transport in single-crystal spiro-OMeTAD. npj Flex. Electron. 1, 2 (2017)CrossRefGoogle Scholar
  29. 29.
    S. Ye, W. Sun, Y. Li, W. Yan, H. Peng, Z. Bian, Z. Liu, C. Huang, CuSCN-based inverted planar perovskite solar cell with an average PCE of 15.6%. Nano Lett. 15(6), 3723–3728 (2015)CrossRefGoogle Scholar
  30. 30.
    N. Arora, M.I. Dar, A. Hinderhofer, N. Pellet, F. Schreiber, S.M. Zakeeruddin, M. Grätzel, Perovskite solar cells with CuSCN hole extraction layers yield stabilized efficiencies > 20%. Science 358, 768–777 (2017)CrossRefGoogle Scholar
  31. 31.
    E.V.A. Premalal, N. Dematage, G.R.R.A. Kumara, R.M.G. Rajapakse, M. Shimomura, K. Murakami, A. Konno, Preparation of structurally modified, conductivity enhanced-p-CuSCN and its application in dye-sensitized solid-state solar cells. J. Power Sources 203, 288–296 (2012)CrossRefGoogle Scholar
  32. 32.
    S. Ito, S. Tanaka, K. Manabe, H. Nishino, Effects of surface blocking layer of Sb2S3 on nanocrystalline TiO2 for CH3NH3PbI3 perovskite solar cells. J. Phys. Chem. C 118(30), 16995–17000 (2014)CrossRefGoogle Scholar
  33. 33.
    S. Ito, S. Kanaya, H. Nishino, T. Umeyama, H. Imahori, Material exchange property of organo lead halide perovskite with hole-transporting materials. Photonics 2, 1043–1053 (2015)CrossRefGoogle Scholar
  34. 34.
    E. Raza, F. Aziz, Z. Ahmad, Stability of organometal halide perovskite solar cells and role of HTMs: recent developments and future directions. RSC Adv. 8, 20952 (2018)CrossRefGoogle Scholar
  35. 35.
    J. Liu, S.K. Pathak, N. Sakai, R. Sheng, S. Bai, Z. Wang, H.J. Snaith, Copper thiocyanate: an efficient and affordable hole transporting material, toward thermally stable perovskite solar cells. Adv. Mater. Interfaces. 3(22), 1600571 (2016)CrossRefGoogle Scholar
  36. 36.
    N.J. Jeon, J.H. Noh, Y.C. Kim, W.S. Yan, S. Ryu, S. Seok, Solvent engineering for high-performance inorganic–organic hybrid perovskite solar cells. Nat. Mater. 13, 897–903 (2014)CrossRefGoogle Scholar
  37. 37.
    N.J. Jeon, J.H. Noh, W.S. Yang, Y.C. Kim, S. Ryu, J. Seo, S. Seok, Compositional engineering of perovskite materials for high-performance solar cells. Nature 517, 476–480 (2015)CrossRefGoogle Scholar
  38. 38.
    M.N.S. Sabet, M. Marandi, F. Ahmadloo, Fabrication of dye sensitized solar cells with different photoanode composition s using hydrothermally grown and P25 TiO2 nanocrystals. Eur. Phys. J. Appl. Phys. 69, 20401 (2015)CrossRefGoogle Scholar
  39. 39.
    M. Marandi, Z. Anajafi, M.N.S. Sabet, S. Bayat, Fabrication of dye sensitized solar cells with improved multi-layer photonodes of hydrothermally grown TiO2 nanocrystals in different autoclaving pHs. Mater. Sci. 28, 9548–9558 (2017)Google Scholar
  40. 40.
    G. Xing, N. Mathews, S. Sun, S.S. Lim, Y.M. Lam, M. Grätzel, S. Mhaisalkar, T.C. Sum, Long-range balanced electron and hole-transport lengths in organic-inorganic CH3NH3PbI3. Science 342, 344–347 (2013)CrossRefGoogle Scholar
  41. 41.
    I.S. Yang et al., Formation of pristine CuSCN layer by spray deposition method for efficient perovskite solar cell with extended stability. Nano Energy 32, 414–421 (2017)CrossRefGoogle Scholar
  42. 42.
    P.B. Ahirrao, S.R. Gosavi, S.S. Sonawane, R.S. Patil, Wide band gap nanocrystalline CuSCN thin films deposited by modified chemical method. Arch. Phys. Res. 2(3), 29–33 (2011)Google Scholar
  43. 43.
    S. Liuab, Q. Shiab, J. Tongab, M. Liab, S. Li, A facile approach for the synthesis of uniform hollow b-CuSCN microspheres. J. Exp. Nanosci. 8, 789–796 (2013)CrossRefGoogle Scholar
  44. 44.
    B.N. Ezealigo, A.C. Nwanya, A. Simo, R. Bucher, R.U. Osuji, M. Maaza, M.V. Reddy, F.I. Ezema, A study on solution deposited CuSCN thin films: structural, electrochemical, optical properties. Arab. J. Chem. (2017).  https://doi.org/10.1016/j.arabjc.2017.04.013 Google Scholar
  45. 45.
    H.J. Snaith, A. Abate, J.M. Ball, Anomalous hysteresis in perovskite solar cells. J. Phys. Chem. Lett. 5, 1511–1515 (2014)CrossRefGoogle Scholar
  46. 46.
    Jing Wei et al., Hysteresis analysis based on ferroelectric effect in hybrid perovskite solar cells. J. Phys. Chem. Lett 5(21), 3937–3945 (2014)CrossRefGoogle Scholar
  47. 47.
    R.S. Sanchez, V. Gonzalez-Pedro, J.-W. Lee, N.-G. Park, Y.S. Kang, I. Mora-Sero, J. Bisquert, Slow dynamic processes in lead halide perovskite solar cells. Characteristic times and hysteresis. J. Phys. Chem. Lett. 5, 2357–2363 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Azam Khorasani
    • 1
  • Maziar Marandi
    • 1
    Email author
  • Azam Iraji zad
    • 2
    • 3
  • Nima Taghavinia
    • 2
    • 3
  1. 1.Physics Department, Faculty of ScienceArak UniversityArakIran
  2. 2.Institute for Nanoscience and NanotechnologySharif University of TechnologyTehranIran
  3. 3.Department of PhysicsSharif University of TechnologyTehranIran

Personalised recommendations