Advertisement

Effect of growth temperature on the photovoltaic characteristics of thermal chemical vapor deposited MoS2 layers grown on p-type Si

  • Maryam Alsadat Nikpay
  • Seyedeh Zahra MortazaviEmail author
  • Ali Reyhani
  • Seyed Mohammad Elahi
Article
  • 28 Downloads

Abstract

In this work, MoS2 layers were grown on the silicon substrates using thermal chemical vapor deposition at different growth temperatures. This method was done by simultaneous evaporating of MoO3 and sulfur powders as precursors at one-step process. The structural properties of the samples were assessed by X-ray diffraction patterns which confirmed the formation of hexagonal MoS2 structures (2H-MoS2). The surface morphology and the thickness of the grown layer were determined by field emission scanning electron microscopy. Moreover, UV–Vis and Raman spectroscopy were applied to confirm the formation of the few layer MoS2 structures. Furthermore, the sheet resistance measurements were carried out to evaluate the resistivity of the obtained layers. In addition, the photovoltaic characteristics of the MoS2 layers grown on p-type Si as p–n junction with Ag (top) and Al (back) contacts were assessed under illumination of sun light simulator.

Notes

Acknowledgements

The authors gratefully acknowledge the financial support of the Iran Science Elites Federation under Grant 11/66332 dated 2015/05/20, and the Research Council of Imam Khomeini International University, and special appreciation from Dr. Nima Naderi for kind cooperation.

References

  1. 1.
    J.M.H. Bai, W. Zhao, Y. Yuan, K. Zhang, Sol. Energy 160, 76 (2018)CrossRefGoogle Scholar
  2. 2.
    M.Y. Li, C.H. Chen, Y. Shi, L.J. Li, Mater. Today 19, 322 (2016)CrossRefGoogle Scholar
  3. 3.
    F. Giannazzo, G. Fisichella, A. Piazza, S. Di Franco, I.P. Oliveri, S. Agnello, F. Roccaforte, Mater. Sci. Semicond. Process. 42, 174 (2016)CrossRefGoogle Scholar
  4. 4.
    A. Splendiani, L. Sun, Y. Zhang, T. Li, J. Kim, C.Y. Chim, G. Galli, F. Wang, Nano Lett. 10, 1271 (2010)CrossRefGoogle Scholar
  5. 5.
    L. Hao, Y. Liu, W. Gao, Z. Han, Q. Xue, H. Zeng, Z. Wu, J. Zhu, W. Zhang, J. Appl. Phys. (2015).  https://doi.org/10.1063/1.4915951 Google Scholar
  6. 6.
    S. Sutar, P. Agnihotri, E. Comfort, T. Taniguchi, K. Watanabe, J.U. Lee, Appl. Phys. Lett. (2014).  https://doi.org/10.1063/1.4870067 Google Scholar
  7. 7.
    Y. Tsuboi, F. Wang, D. Kozawa, K. Funahashi, S. Mouri, Y. Miyauchi, T. Takenobu, K. Matsuda, Nanoscale 7, 14476 (2015)CrossRefGoogle Scholar
  8. 8.
    M.W. Lin, L. Liu, Q. Lan, X. Tan, K.S. Dhindsa, P. Zeng, V.M. Naik, M.M.C. Cheng, Z. Zhou, J. Phys. D (2012).  https://doi.org/10.1088/0022-3727/45/34/345102 Google Scholar
  9. 9.
    M.M. Furchi, A.A. Zechmeister, F. Hoeller, S. Wachter, A. Pospischil, T. Mueller, IEEE J. Sel. Top. Quantum Electron. (2015).  https://doi.org/10.1109/JSTQE.2016.2582318 Google Scholar
  10. 10.
    Y.H. Lee, X.Q. Zhang, W. Zhang, M.T. Chang, C.T. Lin, K.D. Chang, Y.C. Yu, J.T.W. Wang, C.S. Chang, L.J. Li, T.W. Lin, Adv. Mater. 24, 2320 (2012)CrossRefGoogle Scholar
  11. 11.
    H. Liu, Y. Zhu, Q. Meng, X. Lu, S. Kong, Z. Huang, P. Jiang, X. Bao, Nano Res. 10, 643 (2016)CrossRefGoogle Scholar
  12. 12.
    V. Kaushik, D. Varandani, B.R. Mehta, J. Phys. Chem. 119, 20136 (2015)Google Scholar
  13. 13.
    G. Siegel, Y.P.V. Subbaiah, M.C. Prestgard, A. Tiwaria, APL. Mater. (2015).  https://doi.org/10.1063/1.4921580 Google Scholar
  14. 14.
    Q.H. Wang, K. Kalantar-Zadeh, A. Kis, J.N. Coleman, M.S. Strano, Nat. Nano. Technol. 7, 699 (2012)CrossRefGoogle Scholar
  15. 15.
    C.P. Veeramalai, F. Li, Y. Liu, Z. Xu, T. Guo, T.W. Kim, Appl. Surf. Sci. 389, 1017 (2016)CrossRefGoogle Scholar
  16. 16.
    B. Visic, R. Dominko, M.K. Gunde, N. Hauptman, S.D. Skapin, M. Remskar, Nanoscale Res. Lett. (2011).  https://doi.org/10.1186/1556-276X-6-593 Google Scholar
  17. 17.
    C.N.R. Rao, U. Maitra, U.V. Waghmare, Chem. Phys. Lett. 609, 172 (2014)CrossRefGoogle Scholar
  18. 18.
    Q. Ji, Y. Zhang, T. Gao, Y. Zhang, D. Ma, M. Liu, Y. Chen, X. Qiao, P.H. Tan, M. Kan, J. Feng, Q. Sun, Z. Liu, Nano Lett. 13, 3870 (2013)CrossRefGoogle Scholar
  19. 19.
    S. Lee, A. Tang, S. Aloni, H.S.P. Wong, Nano Lett. 16, 276 (2016)CrossRefGoogle Scholar
  20. 20.
    H. Liu, M. Si, S. Najmaei, A.T. Neal, Y. Du, P.M. Ajayan, J. Lou, P.D. Ye, Nano Lett. 13, 2640 (2013)CrossRefGoogle Scholar
  21. 21.
    A. Zafar, H. Nan, Z. Zafar, Z. Wu, J. Jiang, Y. You, Z. Ni, Nano Res. 10, 1608 (2016)CrossRefGoogle Scholar
  22. 22.
    B. Rahmati, I. Hajzadeh, R. Karimzadeh, S.M. Mohseni, Appl. Surf. Sci. 455, 876 (2018)CrossRefGoogle Scholar
  23. 23.
    M. Bernardi, M. Palummo, J.C. Grossman, Nano Lett. 13, 3664 (2013)CrossRefGoogle Scholar
  24. 24.
    X. Hong, J. Kim, S.F. Shi, Y. Zhang, C. Jin, Y. Sun, S. Tongay, J. Wu, Y. Zhang, F. Wang, Nat. Nanotechnol. 9, 682 (2014)CrossRefGoogle Scholar
  25. 25.
    S. Walia, S. Balendhran, Y. Wang, R.A. Kadir, A.S. Zoolfakar, P. Atkin, J.Z. Ou, S. Sriram, K. Kalantar-zadeh, M. Bhaskaran, Appl. Phys. Lett. (2013).  https://doi.org/10.1063/1.4840317 Google Scholar
  26. 26.
    Y. Deng, Z. Luo, N.J. Conrad, H. Liu, Y. Gong, S. Najmaei, P.M. Ajayan, J. Lou, X. Xu, P.D. Ye, ACS Nano 8, 8292 (2014)CrossRefGoogle Scholar
  27. 27.
    B.J. Robinson, C.E. Giusca, Y.T. Gonzalez, N.D. Kay, O. Kazakova, O.V. Kolosov, 2D Mater. (2015).  https://doi.org/10.1088/2053-1583/2/1/015005 Google Scholar
  28. 28.
    J.N. Coleman, M. Lotya, A. O’Neill, S.D. Bergin, P.J. King, U. Khan, K. Young, A. Gaucher, S. De, R.J. Smith, I.V. Shvets, S.K. Arora, G. Stanton, H.Y. Kim, K. Lee, G.T. Kim, G.S. Duesberg, T. Hallam, J.J. Boland, J.J. Wang, J.F. Donegan, J.C. Grunlan, G. Moriarty, A. Shmeliov, R.J. Nicholls, J.M. Perkins, E.M. Grieveson, K. Theuwissen, D.W. McComb, P.D. Nellist, V. Nicolosi, Science 331, 568 (2011)CrossRefGoogle Scholar
  29. 29.
    H. Lin, J. Wang, Q. Luo, H. Peng, C. Luo, R. Qi, R. Huang, J. Travas-Sejdicb, C.G. Duan, J. Alloys Compd. 699, 222 (2017)CrossRefGoogle Scholar
  30. 30.
    W. Wang, X. Zeng, S. Wu, Y. Zeng, Y. Hu, J. Ding, S. Xu, J. Phys. D (2017).  https://doi.org/10.1088/1361-6463/aa81ae Google Scholar
  31. 31.
    S. Bayesteh, S.Z. Mortazavi, A. Reyhani, J. Phys. D (2018).  https://doi.org/10.1088/1361-6463/aab808 Google Scholar
  32. 32.
    C.R. Wu, X.R. Chang, S.W. Chang, C.E. Chang, C.H. Wu, S.Y. Lin, J. Phys. D (2015).  https://doi.org/10.1088/0022-3727/48/43/435101 Google Scholar
  33. 33.
    J. Shan, J. Li, X. Chu, M. Xu, F. Jin, X. Fang, Z. Wei, X. Wang, Appl. Surf. Sci. 443, 31 (2018)CrossRefGoogle Scholar
  34. 34.
    C.M. Hyun, J.H. Choi, S.W. Leea, J.H. Park, K.T. Lee, J.H. Ahn, J. Alloys Compd. 765, 380 (2018)CrossRefGoogle Scholar
  35. 35.
    K. Matsuura, T. Ohashi, I. Munetta, S. Ishihara, K. Kakushima, K. Tsutsui, A. Ogura, H. Wakabayashi, J. Electron. Mater. 47, 3497 (2018)CrossRefGoogle Scholar
  36. 36.
    J.H. Huang, H.H. Chen, P.S. Liu, L.S. Lu, C.T. Wu, C.T. Chou, Y.J. Lee, L.J. Li, W.H. Chang, T.H. Hou, Mater. Res. Express (2016).  https://doi.org/10.1088/2053-1591/3/6/065007 Google Scholar
  37. 37.
    M.A. Nikpay, S.Z. Mortazavi, A. Reyhani, S.M. Elahi, Mater. Res. Express. (2018).  https://doi.org/10.1088/2053-1591/aaa22d Google Scholar
  38. 38.
    P. Fallahazad, N. Naderi, M.J. Eshraghi, A. Massoudi, J. Mater. Sci. 29, 6289 (2018)Google Scholar
  39. 39.
    S. Hussain, M.A. Shehzad, D. Vikraman, M.Z. Iqbal, J. Singh, M.F. Khan, J. Eom, Y. Seo, J. Jung, J. Alloys Compd. 653, 369 (2015)CrossRefGoogle Scholar
  40. 40.
    S. Balendhran, J.Z. Ou, M. Bhaskaran, S. Sriram, S. Ippolito, Z. Vasic, E. Kats, S. Bhargava, S. Zhuiykov, K. Kalantar-zadeh, Nanoscale 4, 461 (2012)CrossRefGoogle Scholar
  41. 41.
    S.H. Baek, Y. Choi, W. Choi, Nanoscale Res. Lett. (2015).  https://doi.org/10.1186/s11671-015-1094-x Google Scholar
  42. 42.
    A.R. Klots, A.K.M. Newaz, B. Wang, D. Prasai, H. Krzyzanowska, J. Lin, D. Caudel, N.J. Ghimire, J. Yan, B.L. Ivanov, K.A. Velizhanin, A. Burger, D.G. Mandrus, N.H. Tolk, S.T. Pantelides, K.I. Bolotin, Sci. Rep. (2014).  https://doi.org/10.1038/srep06608 Google Scholar
  43. 43.
    T. Goto, Y. Kato, K. Uchida, N. Miura, J. Phys. (2000).  https://doi.org/10.1088/0953-8984/12/30/304 Google Scholar
  44. 44.
    M. Ye, D. Winslow, D. Zhang, R. Pandey, Y.K. Yap, Photonics. 2, 288 (2015)CrossRefGoogle Scholar
  45. 45.
    A. Ramasubramaniam, D. Naveh, E. Towe, Phys. Rev. B. (2011).  https://doi.org/10.1103/PhysRevB.84.205325 Google Scholar
  46. 46.
    P.D. Krishna, L.D. Dinh, L. Jubok, N. Honggi, K. Minsu, K. Min, H.L. Young, K. Jeongyong, Nanoscale 6, 13028 (2014)CrossRefGoogle Scholar
  47. 47.
    X. Liu, J. He, Q. Liu, D. Tang, J. Wen, W. Liu, W. Yu, J. Wu, Z. He, Y. Lu, D. Zhu, W. Liu, P. Cao, S. Han, K.W. Ang, J. Appl. Phys. (2015).  https://doi.org/10.1063/1.4931617 Google Scholar
  48. 48.
    N.K. Perkgoz, M. Bay, Nano-Micro Lett. 8, 70 (2015)CrossRefGoogle Scholar
  49. 49.
    H. Li, Q. Zhang, C.C. Ray Yap, B.K. Tay, T.H. Tong Edwin, A. Olivier, D. Baillargeat, Adv. Funct. Mater. 22, 1385 (2012)CrossRefGoogle Scholar
  50. 50.
    S.L. Li, H. Miyazaki, H. Song, H. Kuramochi, S. Nakaharai, K. Tsukagoshi, ACS Nano 6, 7381 (2012)CrossRefGoogle Scholar
  51. 51.
    S. Wang, H. Yu, H. Zhang, A. Wang, M. Zhao, Y. Chen, L. Mei, J. Wang, Adv. Mater. 26, 3538 (2014)CrossRefGoogle Scholar
  52. 52.
    T. Weber, J.C. Muijsers, J.H.C.V. Wolput, C.P.J. Verhagen, J.W. Niemantsverdriet, J. Phys. Chem. 100, 14144 (1996)CrossRefGoogle Scholar
  53. 53.
    S. Bae, H. Kim, Y. Lee, X. Xu, J. Park, Y. Zheng, J. Balakrishnan, T. Lei, H.R. Kim, Y.I. Song, Y.J. Kim, K.S. Kim, B. Özyilmaz, J.H. Ahn, B.H. Hong, S. Iijima, Nat. Nanotechnol. 5, 574 (2010)CrossRefGoogle Scholar
  54. 54.
    W.U. Huynh, J.J. Dittmer, N. Teclemariam, D.J. Milliron, A.P. Alivisatos, K.W. Barnham, Phys. Rev. B. (2003).  https://doi.org/10.1103/PhysRevB.67.115326 Google Scholar
  55. 55.
    K. Mertens, Photovoltaics: Fundamentals, Technology and Practice (Wiley, New York, 2013)Google Scholar
  56. 56.
    A. Gholizadeh, A. Reyhani, P. Parvin, S.Z. Mortazavi, J. Phys. D (2017).  https://doi.org/10.1088/1361-6463/aa6454 Google Scholar
  57. 57.
    E. Singh, K.S. Kim, G.Y. Yeom, H.S. Nalwa, A.C.S. Appl, Mater. Interfaces 9, 3223 (2017)CrossRefGoogle Scholar
  58. 58.
    S.L. Li, K. Wakabayashi, Y. Xu, S. Nakaharai, K. Komatsu, W.W. Li, Y.F. Lin, A. Aparecido-Ferreira, K. Tsukagoshi, Nano Lett. 13, 3546 (2013)CrossRefGoogle Scholar
  59. 59.
    S. Das, H.Y. Chen, A.V. Penumatcha, J. Appenzeller, Nano Lett. 13, 100 (2013)CrossRefGoogle Scholar
  60. 60.
    J. Zheng, X. Yan, Z. Lu, H. Qiu, G. Xu, X. Zhou, P. Wang, X. Pan, K. Liu, L. Jiao, Adv. Mater. (2017).  https://doi.org/10.1002/adma.201604540 Google Scholar
  61. 61.
    M. Shanmugam, C.A. Durcan, B. Yu, Nanoscale 4, 7399 (2012)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Maryam Alsadat Nikpay
    • 1
  • Seyedeh Zahra Mortazavi
    • 2
    Email author
  • Ali Reyhani
    • 2
  • Seyed Mohammad Elahi
    • 1
  1. 1.Physics Department, Faculty of Sciences, Science and Research BranchIslamic Azad UniversityTehranIran
  2. 2.Physics Department, Faculty of ScienceImam Khomeini International UniversityQazvinIran

Personalised recommendations