Advertisement

Frequency, voltage and illumination interaction with the electrical characteristics of the CdZnO interlayered Schottky structure

  • İlke TaşçıoğluEmail author
  • S. O. Tan
  • Ş. Altındal
Article

Abstract

cadmium–zincoxide (CdZnO) interlayered metal–semiconductor structure was examined by capacitance and conductance versus voltage data in dark and under 250 W illumination at 100 kHz, 500 kHz and 1 MHz frequencies, respectively. The effectuality of the frequency, applied voltage, illumination, and series resistance on the electrical parameters was discussed in detail. The increase in the frequency led to the decrement in capacitance and conductance and the increment in the illumination generally led to the increment in capacitance and conductance. An abnormal behavior was detected in the accumulation region of the CV plots at 500 kHz and 1 MHz due to the inductive phenomenon of device. The effect of illumination intensity reduces the Ri values in the inversion region while enhances them in the depletion and accumulation region for 1 MHz. Additionally, the series resistance values decrease with increasing frequency due to the specific dispersion of localized interface states. As a consequence of the experimental results, a remarkable interaction was realized between the electrical parameters and the illumination, frequency and applied biases.

Notes

References

  1. 1.
    S.O. Tan, H. Uslu Tecimer, O. Çiçek, H. Tecimer, İ. Orak, Ş. Altındal, J. Mater. Sci. Mater. Electron. 27, 8340–8347 (2016)CrossRefGoogle Scholar
  2. 2.
    K. Kano, Semiconductor Devices (Prentice-Hall, Upper Saddle River, 1998)Google Scholar
  3. 3.
    H. Uslu, Ş. Altındal, T. Tunc, İ. Uslu, T.S. Mammadov, J. Appl. Polym. Sci. 120, 322–328 (2011)CrossRefGoogle Scholar
  4. 4.
    T.T.A. Tuan, D.-H. Kuo, C.-C. Li, W.-C. Yen, J. Mater. Sci. Mater. Electron. 25, 3264–3270 (2014)CrossRefGoogle Scholar
  5. 5.
    S.O. Tan, IEEE Trans. Electron Devices 64, 5121–5127 (2017)CrossRefGoogle Scholar
  6. 6.
    D.M.C. Galicia, R.C. Perez, O.J. Sandoval, S.J. Sandoval, G.T. Delgado, C.I.Z. Romero, Thin Solid Films 371, 105 (2000)CrossRefGoogle Scholar
  7. 7.
    M. Ortega, G. Santane, A. Morales-Acevedo, Superf. Vacio 9, 294 (1999)Google Scholar
  8. 8.
    J.K. Jha, R.S. Ortiz, J. Du, N.D. Shepherd, J. Mater. Sci. Mater. Electron. 25, 1492–1498 (2014)CrossRefGoogle Scholar
  9. 9.
    W.E. Mahmoud, A.A. Al-Ghamdi, Opt. Laser Technol. 42, 1134–1138 (2010)CrossRefGoogle Scholar
  10. 10.
    C. Tsiarapas, D. Girginoudi, N. Georgoulas, Superlattices Microstruct. 75, 171–182 (2014)CrossRefGoogle Scholar
  11. 11.
    S.O. Tan, H. Uslu Tecimer, O. Çiçek, H. Tecimer, Ş. Altındal, J. Mater. Sci. Mater. Electron. 28, 4951–4957 (2017)CrossRefGoogle Scholar
  12. 12.
    A. Sarıyıldız, Ö. Vural, M. Evecen, Ş. Altındal, J. Mater. Sci. Mater. Electron. 25, 4391–4397 (2014)CrossRefGoogle Scholar
  13. 13.
    V.R. Reddy, V. Janardhanam, M.-S. Kang, C.-J. Choi, J. Mater. Sci. Mater. Electron. 25, 2379–2386 (2014)CrossRefGoogle Scholar
  14. 14.
    H.C. Card, E.H. Rhoderick, J. Phys. D 4, 1589–1601 (1971)CrossRefGoogle Scholar
  15. 15.
    S. Alialy, H. Tecimer, H. Uslu, Ş. Altındal, J. Nanomed. Nanotechnol. 4, 167–173 (2013)Google Scholar
  16. 16.
    J. Szatkowski, K. Sierański, Solid State Electron. 35, 1013–1015 (1992)CrossRefGoogle Scholar
  17. 17.
    E. Marıl, S.O. Tan, Ş. Altındal, İ. Uslu, IEEE Trans. Electron Devices 65, 3901–3908 (2018)CrossRefGoogle Scholar
  18. 18.
    İ. Taşçıoğlu, Ö. Tüzün Özmen, H.M. Şağban, E. Yağlıoğlu, Ş. Altındal, J. Electron. Mater. 46, 2379–2386 (2017)CrossRefGoogle Scholar
  19. 19.
    M. Gandouzi, Z.R. Khan, A.S. Alshammaria, Comput. Mater. Sci. 156, 346–353 (2019)CrossRefGoogle Scholar
  20. 20.
    J. Grosvalet, C. Jund, IEEE Trans. Electron Devices 14, 777–780 (1967)CrossRefGoogle Scholar
  21. 21.
    D. Korucu, A. Türüt, R. Turan, Ş. Altındal, Mater. Sci. Semicond. Process. 16, 344–351 (2013)CrossRefGoogle Scholar
  22. 22.
    E. Arslan, Y. Safak, S. Altındal, Ö. Kelekçi, E. Özbay, J. Noncryst. Solids 356, 1006–1011 (2010)CrossRefGoogle Scholar
  23. 23.
    E.E. Tanrıkulu, S. Demirezen, Ş. Altındal, İ. Uslu, J. Mater. Sci. Mater. Electron. 29, 2890–2898 (2018)CrossRefGoogle Scholar
  24. 24.
    C.H. Champness, W.R. Clark, Appl. Phys. Rev. Lett. 56, 1104 (1990)CrossRefGoogle Scholar
  25. 25.
    A.A.M. Farag, I.S. Yahia, M. Fadel, Int. J. Hydrog. Energy 34, 4906–4913 (2009)CrossRefGoogle Scholar
  26. 26.
    B.K. Jones, J. Santana, M. McPherson, Solid State Commun. 107, 47–50 (1998)CrossRefGoogle Scholar
  27. 27.
    H. Tecimer, S.O. Tan, Ş. Altındal, IEEE Trans. Electron Devices 65, 231–236 (2018)CrossRefGoogle Scholar
  28. 28.
    A. Dutta, C. Bharti, T.P. Sinha, Mater. Res. Bull. 43, 1246–1254 (2008)CrossRefGoogle Scholar
  29. 29.
    G.D. Sharma, D. Saxena, M.S. Roy, Synth. Met. 106, 97–105 (1999)CrossRefGoogle Scholar
  30. 30.
    E.H. Nicollian, J.R. Brews, Metal Oxide Semiconductor (MOS) Physics and Technology (Wiley, New York, 1982)Google Scholar
  31. 31.
    A. Büyükbaş Uluşan, A. Tataroğlu, Silicon 10, 2071–2077 (2018)CrossRefGoogle Scholar
  32. 32.
    H. Saidi, W. Aloui, A. Bouazizi, J. Mater. Sci. Mater. Electron. 29, 18051–18058 (2018)CrossRefGoogle Scholar
  33. 33.
    P.P. Sharmila, R.M. Sebastain, S. Sagar, E.M. Mohammed, N.J. Tharayil, Ferroelectrics 474, 144–155 (2015)CrossRefGoogle Scholar
  34. 34.
    S. Suresh, J. Nano Res. 34, 91–97 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Electrical and Electronics Engineering, Faculty of Engineering and Architectureİstanbul Arel UniversityIstanbulTurkey
  2. 2.TOBB Technical Sciences Vocational SchoolKarabuk UniversityKarabükTurkey
  3. 3.Department of Physics, Faculty of ScienceGazi UniversityAnkaraTurkey

Personalised recommendations