Efficient microwave absorbing materials based on LiCo0.94Mg0.06O2 filled MgO ceramics in the X-hand

  • Minghao YangEmail author
  • Wancheng Zhou
  • Gangli Feng
  • Fa Luo
  • Dongmei Zhu


The dielectric and microwave absorption properties of LiCo0.94Mg0.06O2, which is application into lithium batteries areas, have not yet been conducted. In this work, LiCo0.94Mg0.06O2 was synthesized using a solid-state reaction. LiCo0.94Mg0.06O2/MgO composite ceramics with excellent microwave absorption property were prepared by pressureless sintering method. The characteristics of the composite ceramics, such as phase composition, microstructure, electromagnetic properties and reflection loss (RL) were investigated. The influence of sintering temperature on composite ceramics was discussed and the possible mechanism was analyzed. Both the real and imaginary parts of the complex permittivity increased with increasing LiCo0.94Mg0.06O2− content. Suitable values and frequency dependence of the complex permittivity of LiCo0.94Mg0.06O2 powders filled MgO ceramics can be obtained. The 40 wt% LiCo0.94Mg0.06O2 filled MgO ceramics in a thickness of 1.8 mm has the lowest reflection loss (RL < − 5 dB bandwidth in all X-band). This result suggests that composite ceramics could be good candidates to become efficient microwave absorption materials in X-band.



This work was supported by Fundamental Research Funds for the Central universities (No. 3102017ZY050) and the State Key Laboratory of the Solidification Processing in NWPU, China (No. KP201604).


  1. 1.
    W.C. Zhou, X.J. Hu, X.X. Bai, S.Y. Zhou, C.H. Sun, J. Yan, P. Chen, Synthesis and electromagnetic, microwave absorbing properties of core-shell Fe3O4-Poly(3, 4-ethylenedioxythiophene) microspheres. Acs Appl. Mater. Inte.r 3, 3839–3845 (2011)CrossRefGoogle Scholar
  2. 2.
    M.A. Abshinova, N.E. Kazantseva, P. Saha, I. Sapurina, J. Kovarova, J. Stejskal, The enhancement of the oxidation resistance of carbonyl iron by polyaniline coating and consequent changes in electromagnetic properties. Polym. Degrad. Stabil. 93, 1826–1831 (2008)CrossRefGoogle Scholar
  3. 3.
    Y. Liu, F. Luo, J.B. Su, W.C. Zhou, D.M. Zhu, Z.M. Li, Enhanced mechanical, dielectric and microwave absorption properties of cordierite based ceramics by adding Ti3SiC2 powders. J. Alloy. Compd. 619, 854–860 (2015)CrossRefGoogle Scholar
  4. 4.
    P.B. Liu, M.Y. Yang, S.H. Zhou, Y. Huang, Y.D. Zhu, Hierarchical shell-core structures of concave spherical NiO nanospines@carbon for high performance supercapacitor electrodes. Electrochim. Acta 294, 383–390 (2019)CrossRefGoogle Scholar
  5. 5.
    P. Xu, X. Han, C. Wang, D. Zhou, Z. Lv, A. Wen, X. Wang, B. Zhang, Synthesis of electromagnetic functionalized nickel/polypyrrole core/shell composites. J. Phys. Chem. B 112, 10443–10448 (2008)CrossRefGoogle Scholar
  6. 6.
    L.G. Yan, J.B. Wang, X.H. Han, Y. Ren, Q.F. Liu, F.S. Li, Enhanced microwave absorption of Fe nanoflakes after coating with SiO2 nanoshell. Nanotechnology 21, 095708 (2010)CrossRefGoogle Scholar
  7. 7.
    Y. Mu, H. Li, J.X. Deng, W.C. Zhou, Temperature-dependent electromagnetic shielding properties of SiCf/BN/SiC composites fabricated by chemical vapor infiltration process. J. Alloy. Compd. 724, 633–640 (2017)CrossRefGoogle Scholar
  8. 8.
    P.Y. Meng, K. Xiong, L. Wang, S.N. Li, Y.K. Cheng, G.L. Xu, Tunable complex permeability and enhanced microwave absorption properties of BaNixCo1-xTiFe10O19. J. Alloy. Compd. 628, 75–80 (2015)CrossRefGoogle Scholar
  9. 9.
    J. Dong, W.C. Zhou, S.C. Duan, H.Y. Jia, L. Gao, F. Luo, D.M. Zhu, Q. Chen, Mechanical, dielectric and microwave absorption properties of carbon black (CB) incorporated SiO2f/PI composites. J Mater Sci 29, 17100–17107 (2018)Google Scholar
  10. 10.
    H. Tukamoto, A.R. West, Electronic conductivity of LiCoO2 and its enhancement by magnesium doping. J. Electrochem. Soc. 144, 3164–3168 (1997)CrossRefGoogle Scholar
  11. 11.
    M. Carewska, S. Scaccia, F. Croce, S. Arumugam, Y. Wang, S. Greenbaum, Electrical conductivity and 6,7Li NMR studies of Li1 + yCoO2. Solid State Ionics 93, 227–237 (1997)CrossRefGoogle Scholar
  12. 12.
    M. Menetrier, I. Saadoune, S. Levasseur, C. Delmas, The insulator-metal transition upon lithium deintercalation from LiCoO2: electronic properties and Li-7 NMR study. J. Mater. Chem. 9, 1135–1140 (1999)CrossRefGoogle Scholar
  13. 13.
    S. Levasseur, M. Menetrier, C. Delmas, On the dual effect of Mg doping in LiCoO2 and Li1 + delta CoO2: structural, electronic properties, and Li-7 MAS NMR studies. Chem. Mater. 14, 3584–3590 (2002)CrossRefGoogle Scholar
  14. 14.
    M. Park, X.C. Zhang, M.D. Chung, G.B. Less, A.M. Sastry, A review of conduction phenomena in Li-ion batteries. J. Power Sources 195, 7904–7929 (2010)CrossRefGoogle Scholar
  15. 15.
    M.H. Yang, W.C. Zhou, F. Luo, D.M. Zhu, Dielectric and microwave absorption properties of LiCoO2 and its enhancement by micro-doping with metal ions. J Mater Sci 30, 323–331 (2019)Google Scholar
  16. 16.
    M. Yang, Z. Wancheng, L. Fa, D. Zhu, Enhanced dielectric and microwave absorption properties of LiCoO2 powders by magnesium doping in the X-band. J Am Ceram Soc 102, 4048–4055 (2019)CrossRefGoogle Scholar
  17. 17.
    C. Fadley, Basic concepts of X-ray photoelectron spectroscopy. Electron Spectrosc 2, 1–156 (1978)Google Scholar
  18. 18.
    K. Kim, X-ray-photoelectron spectroscopic studies of the electronic structure of CoO. Phys Rev B 11, 2177 (1975)CrossRefGoogle Scholar
  19. 19.
    J.-C. Dupin, D. Gonbeau, P. Vinatier, A. Levasseur, Systematic XPS studies of metal oxides, hydroxides and peroxides. Phys. Chem. Chem. Phys. 2, 1319–1324 (2000)CrossRefGoogle Scholar
  20. 20.
    M. Oku, X-ray photoelectron spectrum of low-spin Co (III) in LiCoO2. J. Solid State Chem. 23, 177–185 (1978)CrossRefGoogle Scholar
  21. 21.
    T. Miyazaki, T. Doi, M. Kato, T. Miyake, I. Matsuura, Structure and catalysis of layered rock-salt type oxides for methane oxidation. Appl. Surf. Sci. 121, 492–495 (1997)CrossRefGoogle Scholar
  22. 22.
    S. Hüfner, Electronic structure of NiO and related 3d-transition-metal compounds. Adv. Phys. 43, 183–356 (1994)CrossRefGoogle Scholar
  23. 23.
    J.C. Dupin, D. Gonbeau, H. Benqlilou-Moudden, P. Vinatier, A. Levasseur, XPS analysis of new lithium cobalt oxide thin-films before and after lithium deintercalation. Thin Solid Films 384, 23–32 (2001)CrossRefGoogle Scholar
  24. 24.
    N. Pereira, C. Matthias, K. Bell, F. Badway, I. Plitz, J. Al-Sharab, F. Cosandey, P. Shah, N. Isaacs, G.G. Amatucci, Stoichiometric, morphological, and electrochemical impact of the phase stability of LixCoO2. J. Electrochem. Soc. 152, A114–A125 (2005)CrossRefGoogle Scholar
  25. 25.
    L. Daheron, R. Dedryvere, H. Martinez, M. Menetrier, C. Denage, C. Delmas, D. Gonbeau, Electron transfer mechanisms upon lithium deintercalation from LiCoO2 to CoO2 investigated by XPS. Chem. Mater. 20, 583–590 (2008)CrossRefGoogle Scholar
  26. 26.
    L. Zhou, W.C. Zhou, J.B. Su, F. Luo, D.M. Zhu, Y.L. Dong, Plasma sprayed Al2O3/FeCrAl composite coatings for electromagnetic wave absorption application. Appl. Surf. Sci. 258, 2691–2696 (2012)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.State Key Laboratory of Solidification ProcessingNorthwestern Polytechnical UniversityXi’anChina

Personalised recommendations