Microstructures and properties of Ag–Cu–Ti–In composite fillers for electronic packaging applications

  • Shanshan Zhang
  • Luchun Yan
  • Kewei Gao
  • Huisheng YangEmail author
  • Lihang Yang
  • Yanbin Wang
  • Xiaoling Wan


With excellent thermal cycling performance, active metal brazing (AMB) ceramic substrates have been highly competitive materials for high power packaging. In related researches, composite filler is an effective way to improve the comprehensive performance of ceramic substrates. The effects of particle hardness on microstructure and properties (i.e., coefficient of thermal expansion (CTE), elastic modulus and compression properties) of Ag–Cu–Ti–In composite fillers were studied in this paper. The results showed that the microstructures of composite fillers were refined with the increase of graphite and TiC content. Meanwhile, the reduction of CTE of composite fillers added with TiC particles is better than that of graphite particles. The CTE of G10 sample is 7.4% lower than that of the sample without particle, and T10 sample is 8.9% lower. Furthermore, TiC particles increased both elastic modulus and yield strength of the composite fillers while graphite particles mainly had an opposite effect. The bulk modulus of the composite fillers drops sharply from 95.96 to 12.64 GPa when the content of graphite particles was 10 wt% compared with that of the filler metal without particles. The yield strength of composite filler with graphite content of 1 wt% reaches 380 MPa, which is caused by the in situ reaction between graphite and Ti. However, the elastic modulus and the yield strength of the composite fillers increases with the increase of TiC content.



This project is supported by the National Key R&D Program of China (Grant No. 2016YFB0700201), and the National Natural Science Foundation of China (Grant No. 51601014).


  1. 1.
    D.P. Hamilton, S. Riches, M. Meisser, L. Mills, P. Mawby, High temperature thermal cycling performance of DBA, AMB and thick film power module substrates, in CIPS 2016; 9th International Conference on Integrated Power Electronics Systems; Proceedings of, VDE, (2016), pp. 1–5Google Scholar
  2. 2.
    S. Zhang, W. Jin, H. Yang, K. Gao, X. Pang, L. Yan, A.A. Volinsky, Comparative study of Ti and Cr adhesion to the AlN ceramic: experiments and calculations. Appl. Surf. Sci. 457, 856–862 (2018)CrossRefGoogle Scholar
  3. 3.
    Y. Wang, Z.W. Yang, L.X. Zhang, D.P. Wang, J.C. Feng, Microstructure and mechanical properties of SiO2-BN ceramic and Invar alloy joints brazed with Ag + Cu–Ti + TiH2 + BN composite filler. J. Mater. 2, 66–74 (2016)Google Scholar
  4. 4.
    Z. Sun, L.X. Zhang, J.L. Qi, Z.H. Zhang, C.L. Tian, J.C. Feng, Brazing of SiO2f/SiO2 composite modified with few-layer graphene and Invar using AgCuTi alloy. Mater. Des. 88, 51–57 (2015)CrossRefGoogle Scholar
  5. 5.
    O. Kozlova, M. Braccini, R. Voytovych, N. Eustathopoulos, P. Martinetti, M.F. Devismes, Brazing copper to alumina using reactive CuAgTi alloys. Acta Mater. 58, 1252–1260 (2010)CrossRefGoogle Scholar
  6. 6.
    M. Galli, J. Cugnoni, J. Botsis, J. Janczak-Rusch, Identification of the matrix elastoplastic properties in reinforced active brazing alloys. Compos. A 39, 972–978 (2008)CrossRefGoogle Scholar
  7. 7.
    G. Dong, G. Lei, X. Chen, K. Ngo, G.Q. Lu, Edge tail length effect on reliability of DBC substrates under thermal cycling. Solder. Surf. Mt. Technol. 21(3), 10–15 (2009)CrossRefGoogle Scholar
  8. 8.
    K.M. Shorowordi, T. Laoui, A.S.M.A. Haseeb, J.P. Celis, L. Froyen, Microstructure and interface characteristics of B4C, SiC and Al2O3 reinforced Al matrix composites: a comparative study. J. Mater. Process. Technol. 142(3), 738–743 (2003)CrossRefGoogle Scholar
  9. 9.
    Y. Zhao, X. Song, C. Tan, S. Hu, J. Cao, J. Feng, Microstructural evolution of Si3N4/Ti6Al4 V joints brazed with nano-Si3N4 reinforced AgCuTi composite filler. Vacuum 142, 58–65 (2017)CrossRefGoogle Scholar
  10. 10.
    C. Su, X. Zhuang, C. Pan, Al2O3/SUS304 brazing via AgCuTi-W composite as active filler. J. Mater. Eng. Perform. 23(3), 906–911 (2014)CrossRefGoogle Scholar
  11. 11.
    M. Yang, P. He, T. Lin, Effect of brazing conditions on microstructure and mechanical properties of Al2O3/Ti-6Al-4 V alloy joints reinforced by TiB whiskers. J. Mater. Sci. Technol. 29(10), 961–970 (2013)CrossRefGoogle Scholar
  12. 12.
    C. Chuang, L. Tsao, Effects of nanoparticles on the thermal, microstructural and mechanical properties of novel Sn3.5Ag0.5Zn composite solders. J. Mater. Sci.: Mater. Electron. 29(5), 4096–4105 (2018)Google Scholar
  13. 13.
    B. Cui, J. Hua Huang, J. Hui Xiong, H. Zhang, Reaction-composite brazing of carbon fiber reinforced SiC composite and TC4 alloy using Ag-Cu-Ti-(Ti + C) mixed powder. Mater. Sci. Eng., A 562, 203–210 (2013)CrossRefGoogle Scholar
  14. 14.
    J. Zhang, Y.M. He, Y. Sun, C.F. Liu, Microstructure evolution of Si3N4/Si3N4 joint brazed with Ag-Cu-Ti + SiCp composite filler. Ceram. Int. 36, 1397–1404 (2010)CrossRefGoogle Scholar
  15. 15.
    L.C. Tsao, S.Y. Chang, C.I. Lee, W.H. Sun, C.H. Huang, Effects of nano-Al2O3 additions on microstructure development and hardness of Sn3.5Ag0.5Cu solder. Mater. Des. 31(10), 4831–4835 (2010)CrossRefGoogle Scholar
  16. 16.
    F. Tai, F. Guo, Effects of particle size on the mechanical properties of particle-reinforced Sn-Ag composite solder joint. Sci. China Ser. E 52(1), 243–251 (2009)CrossRefGoogle Scholar
  17. 17.
    T. Fei, Y. Kun, L. Jie, H.J. Fang, C.L. Shi, Y.I. Dai, H.Q. Xiong, Microstructures and properties of Al-50% SiC composites for electronic packaging applications. Trans. Nonferrous Met. Soc. China 26, 2647–2652 (2016)CrossRefGoogle Scholar
  18. 18.
    Q. Zhang, G. Wu, L. Jiang, G. Chen, Thermal expansion and dimensional stability of Al–Si matrix composite reinforced with high content SiC. Mater. Chem. Phys. 82, 780–785 (2003)CrossRefGoogle Scholar
  19. 19.
    W.C. Schneider, C.J. Burton, Determination of the elastic constants of solids by ultrasonic methods. J. Appl. Phys. 20, 48–58 (1949)CrossRefGoogle Scholar
  20. 20.
    K.Y. Kim, R. Sribar, W. Sachse, Analytical and optimization procedures for determination of all elastic constants of anisotropic solids from group velocity data measured in symmetry planes. J. Appl. Phys. 77, 5589–5600 (1995)CrossRefGoogle Scholar
  21. 21.
    J. Li, J. Ma, S. Chen, Y. Huang, J. He, Adsorption of lysozyme by alginate/graphene oxide composite beads with enhanced stability and mechanical property. Mat. Sci. Eng. C 89, 25–32 (2018)CrossRefGoogle Scholar
  22. 22.
    H. Khan, K. Malook, M. Shah, Polypyrrole/MnO2 composites: synthesis, structural and electrical properties. J. Mater. Sci.: Mater. Electron. 29(11), 9090–9098 (2018)Google Scholar
  23. 23.
    Z. Wang, M. Yang, Y. Cheng, J. Liu, B. Xiao, S. Chen, J. Huang, Q. Xie, G. Wu, H. Wu, Dielectric properties and thermal conductivity of epoxy composites using quantum-sized silver decorated core/shell structured alumina/polydopamine. Compos. A 118, 302–311 (2019)CrossRefGoogle Scholar
  24. 24.
    J.B. Spicer, L.R. Olasov, F.W. Zeng, K. Han, N.C. Gallego, C.I. Contescu, Laser ultrasonic assessment of the effects of porosity and microcracking on the elastic moduli of nuclear graphites. J. Nucl. Mater. 471, 80–91 (2016)CrossRefGoogle Scholar
  25. 25.
    K.M. Shu, G. Tu, The microstructure and the thermal expansion characteristics of Cu/SiCp composites. Mater. Sci. Eng., A 349, 236–247 (2003)CrossRefGoogle Scholar
  26. 26.
    J.M. Molina, R.A. Saravanan, R. RArpón, C. Garcı́a-Cordovilla, E. Louis, J. Narciso, Pressure infiltration of liquid aluminium into packed SiC particulate with a bimodal size distribution. Acta Mater. 50, 247–257 (2002)CrossRefGoogle Scholar
  27. 27.
    S.Y. Fu, X.Q. Feng, B. Lauke, Y.W. Mai, Effects of particle size, particle/matrix interface adhesion and particle loading on mechanical properties of particulate-polymer composites. Compos. B 39, 933–961 (2008)CrossRefGoogle Scholar
  28. 28.
    Q. Che, X. Chen, Y. Ji, Y. Li, L. Wang, S. Cao, Y. Jiang, Z. Wang, The influence of minor titanium addition on thermal properties of diamond/copper composites via in situ reactive sintering. Mater. Sci. Semicond. Process. 30, 104–111 (2015)CrossRefGoogle Scholar
  29. 29.
    H. Xia, X. Zhang, Z. Shi, C. Zhao, Y. Li, J. Wang, G. Qiao, Mechanical and thermal properties of reduced graphene oxide reinforced aluminum nitride ceramic composites. Mater. Sci. Eng., A 639, 29–36 (2015)CrossRefGoogle Scholar
  30. 30.
    A. Feng, G. Wu, Y. Wang, C. Pan, Synthesis, preparation and mechanical property of wood fiber-reinforced poly (vinyl chloride) composites. J. Nanosci. Nanotechnol. 17(6), 3859–3863 (2017)CrossRefGoogle Scholar
  31. 31.
    I.A. Ibrahim, F.A. Mohamed, E.J. Lavernia, Particulate reinforced metal matrix composites: a review. J. Mater. Sci. 26, 1137–1156 (1991)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Shanshan Zhang
    • 1
  • Luchun Yan
    • 1
  • Kewei Gao
    • 1
  • Huisheng Yang
    • 1
    Email author
  • Lihang Yang
    • 1
  • Yanbin Wang
    • 1
  • Xiaoling Wan
    • 1
  1. 1.Department of Materials Physics and ChemistryUniversity of Science and TechnologyBeijingChina

Personalised recommendations