Advertisement

Enhanced photoresponse of tungsten disulfide-reduced graphene oxide hybrid for photoelectrochemical photodetectors

  • Yue Tao
  • Bo Wang
  • Hui Qiao
  • Zongyu HuangEmail author
  • Xiang Qi
Article
  • 59 Downloads

Abstract

In this report, WS2-reduced graphene oxide (WS2-rGO) hybrid was successfully synthesized through a hydrothermal reduction process in which WS2 nanosheets (WS2 NSs) were prepared by a lithium-ion intercalation and exfoliation technique. The photodetection properties of as-synthesized samples have been systematically investigated using a photoelectrochemical (PEC) system, which presents a reproducible photoresponse of WS2-rGO under zero bias, indicating that such hybrid is a promising photoanode for self-powered photodetectors. At a bias of 0.8 V, the photocurrent density of WS2-rGO hybrid was 4.32 μA/cm2, which is approximately 800% of that of the bare WS2 photodetector. Meanwhile, the photoresponsivity of as-prepared WS2-rGO hybrid increases linearly with the irradiation intensity, up to 9.3 μA/W at power density of 30 mW/cm2. In addition, the stability test exhibits no conspicuous degradation after 100 cycles. The enhanced performance of the WS2-rGO hybrid benefits from the high carrier mobility of rGO and the efficient separation of photogenerated carriers at the WS2-rGO interface. This research demonstrates that the WS2-rGO hybrid has a good prospect in PEC-type photodetectors.

Notes

Acknowledgements

This work was supported by the Grants from National Natural Science Foundation of China (No. 11504312), Scientific Research Fund of Hunan Provincial Education Department (No. 18A059), Open Fund based on innovation platform of Hunan colleges and universities (No. 18K032), Provincial Natural Science Foundation of Hunan (No. 2019JJ50612), the Program for Changjiang Scholars and Innovative Research Team in University (IRT_17R91) and Science and Technology Program of Xiangtan (No. CXY-ZD20172002).

Compliance with ethical standards

Conflicts of interest

There are no conflicts of interest to declare.

References

  1. 1.
    Z.L. Wang, Self-powered nanosensors and nanosystems. Adv. Mater. 24, 280–285 (2012)CrossRefGoogle Scholar
  2. 2.
    H. Zhou, Z. Song, P. Tao, H. Lei, P. Gui, J. Mei, H. Wang, G. Fang, Self-powered, ultraviolet-visible perovskite photodetector based on TiO2 nanorods. RSC Adv. 6, 6205–6208 (2016)CrossRefGoogle Scholar
  3. 3.
    A.S. Pawbake, R.G. Waykar, D.J. Late, S.R. Jadkar, Highly transparent wafer-scale synthesis of crystalline WS2 nanoparticle thin film for photodetector and humidity-sensing applications. ACS Appl. Mater. Interfaces 8, 3359–3365 (2016)CrossRefGoogle Scholar
  4. 4.
    N. Huo, S. Yang, Z. Wei, S.-S. Li, J.-B. Xia, J. Li, Photoresponsive and gas sensing field-effect transistors based on multilayer WS2 nanoflakes. Sci. Rep. 4, srep05209 (2014)Google Scholar
  5. 5.
    T. Mueller, F. Xia, P. Avouris, Graphene photodetectors for high-speed optical communications. Nat. Mater. 4, 297 (2010)Google Scholar
  6. 6.
    A. Abouraddy, M. Bayindir, G. Benoit, S. Hart, K. Kuriki, N. Orf, O. Shapira, F. Sorin, B. Temelkuran, Y. Fink, Towards multimaterial multifunctional fibres that see, hear, sense and communicate. Nat. Mater. 6, 336 (2007)CrossRefGoogle Scholar
  7. 7.
    D.J. Late, B. Liu, H.R. Matte, V.P. Dravid, C. Rao, Hysteresis in single-layer MoS2 field effect transistors. ACS Nano 6, 5635–5641 (2012)CrossRefGoogle Scholar
  8. 8.
    Z.-Q. Xu, Y. Zhang, S. Lin, C. Zheng, Y.L. Zhong, X. Xia, Z. Li, P.J. Sophia, M.S. Fuhrer, Y.-B. Cheng, Synthesis and transfer of large-area monolayer WS2 crystals: moving toward the recyclable use of sapphire substrates. ACS Nano 9, 6178–6187 (2015)CrossRefGoogle Scholar
  9. 9.
    Y. Yu, Y. Zhang, X. Song, H. Zhang, M. Cao, Y. Che, H. Dai, J. Yang, H. Zhang, J. Yao, PbS-decorated WS2 phototransistors with fast response. ACS Photonics 4, 950–956 (2017)CrossRefGoogle Scholar
  10. 10.
    M. Bernardi, M. Palummo, J.C. Grossman, Extraordinary sunlight absorption and one nanometer thick photovoltaics using two-dimensional monolayer materials. Nano Lett. 13, 3664–3670 (2013)CrossRefGoogle Scholar
  11. 11.
    C. Zhang, S. Wang, L. Yang, Y. Liu, T. Xu, Z. Ning, A. Zak, Z. Zhang, R. Tenne, Q. Chen, High-performance photodetectors for visible and near-infrared lights based on individual WS2 nanotubes. Appl. Phys. Lett. 100, 243101 (2012)CrossRefGoogle Scholar
  12. 12.
    J. Yao, Z. Zheng, J. Shao, G. Yang, Stable, highly-responsive and broadband photodetection based on large-area multilayered WS2 films grown by pulsed-laser deposition. Nanoscale 7, 14974–14981 (2015)CrossRefGoogle Scholar
  13. 13.
    Y. Fan, Y. Zhou, X. Wang, H. Tan, Y. Rong, J.H. Warner, Photoinduced Schottky barrier lowering in 2D monolayer WS2 photodetectors. Adv. Opt. Mater. 4, 1573–1581 (2016)CrossRefGoogle Scholar
  14. 14.
    W. Zhang, Z. Huang, W. Zhang, Y. Li, Two-dimensional semiconductors with possible high room temperature mobility. Nano Res. 7, 1731–1737 (2014)CrossRefGoogle Scholar
  15. 15.
    X. Liu, J. Hu, C. Yue, N. Della Fera, Y. Ling, Z. Mao, J. Wei, High performance field-effect transistor based on multilayer tungsten disulfide. ACS Nano 8, 10396–10402 (2014)CrossRefGoogle Scholar
  16. 16.
    K. Roy, M. Padmanabhan, S. Goswami, T.P. Sai, G. Ramalingam, S. Raghavan, A. Ghosh, Graphene-MoS2 hybrid structures for multifunctional photoresponsive memory devices. Nat. Nanotechnol. 8, 826 (2013)CrossRefGoogle Scholar
  17. 17.
    R.R. Nair, P. Blake, A.N. Grigorenko, K.S. Novoselov, T.J. Booth, T. Stauber, N.M. Peres, A.K. Geim, Fine structure constant defines visual transparency of graphene. Science 320, 1308–1308 (2008)CrossRefGoogle Scholar
  18. 18.
    L. Britnell, R. Ribeiro, A. Eckmann, R. Jalil, B. Belle, A. Mishchenko, Y.-J. Kim, R. Gorbachev, T. Georgiou, S. Morozov, Strong light-matter interactions in heterostructures of atomically thin films. Science 340, 1311–1314 (2013)CrossRefGoogle Scholar
  19. 19.
    H. Tan, Y. Fan, Y. Zhou, Q. Chen, W. Xu, J.H. Warner, Ultrathin 2D photodetectors utilizing chemical vapor deposition grown WS2 with graphene electrodes. ACS Nano 10, 7866–7873 (2016)CrossRefGoogle Scholar
  20. 20.
    A.S. Aji, P. Solís-Fernández, H.G. Ji, K. Fukuda, H. Ago, High mobility WS2 transistors realized by multilayer graphene electrodes and application to high responsivity flexible photodetectors. Adv. Funct. Mater. 27, 1703448 (2017)CrossRefGoogle Scholar
  21. 21.
    L. Peng, L. Hu, X. Fang, Energy harvesting for nanostructured self-powered photodetectors. Adv. Funct. Mater. 24, 2591–2610 (2014)CrossRefGoogle Scholar
  22. 22.
    Z.L. Wang, W. Wu, Nanotechnology-enabled energy harvesting for self-powered micro-/nanosystems. Angew. Chem. Int. Ed. 51, 11700–11721 (2012)CrossRefGoogle Scholar
  23. 23.
    S. Xu, Y. Qin, C. Xu, Y. Wei, R. Yang, Z.L. Wang, Self-powered nanowire devices. Nat. Nanotechnol. 5, 366 (2010)CrossRefGoogle Scholar
  24. 24.
    J. Hassan, M. Mahdi, S. Kasim, N.M. Ahmed, H. Abu Hassan, Z. Hassan, High sensitivity and fast response and recovery times in a ZnO nanorod array/p-Si self-powered ultraviolet detector. Appl. Phys. Lett. 101, 261108 (2012)CrossRefGoogle Scholar
  25. 25.
    S. Sarkar, D. Basak, Self-powered highly enhanced dual wavelength ZnO@CdS core-shell nanorod arrays photodetector: an intelligent pair. ACS Appl. Mater. Interfaces 7, 16322–16329 (2015)CrossRefGoogle Scholar
  26. 26.
    L. Ren, X. Qi, Y. Liu, G. Hao, Z. Huang, X. Zou, L. Yang, J. Li, J. Zhong, Large-scale production of ultrathin topological insulator bismuth telluride nanosheets by a hydrothermal intercalation and exfoliation route. J. Mater. Chem. 22, 4921–4926 (2012)CrossRefGoogle Scholar
  27. 27.
    W. Jin, Y. Ye, L. Gan, B. Yu, P. Wu, Y. Dai, H. Meng, X. Guo, L. Dai, Self-powered high performance photodetectors based on CdSe nanobelt/graphene Schottky junctions. J. Mater. Chem. 22, 2863–2867 (2012)CrossRefGoogle Scholar
  28. 28.
    D.-S. Tsai, C.-A. Lin, W.-C. Lien, H.-C. Chang, Y.-L. Wang, J.-H. He, Ultra-high-responsivity broadband detection of Si metal-semiconductor-metal Schottky photodetectors improved by ZnO nanorod arrays. ACS Nano 5, 7748–7753 (2011)CrossRefGoogle Scholar
  29. 29.
    Y. Yang, W. Guo, J. Qi, J. Zhao, Y. Zhang, Self-powered ultraviolet photodetector based on a single Sb-doped ZnO nanobelt. Appl. Phys. Lett. 97, 223113 (2010)CrossRefGoogle Scholar
  30. 30.
    Q. Li, L. Wei, Y. Xie, K. Zhang, L. Liu, D. Zhu, J. Jiao, Y. Chen, S. Yan, G. Liu, ZnO nanoneedle/H2O solid-liquid heterojunction-based self-powered ultraviolet detector. Nanoscale Res. Lett. 8, 415 (2013)CrossRefGoogle Scholar
  31. 31.
    Y. Xie, L. Wei, G. Wei, Q. Li, D. Wang, Y. Chen, S. Yan, G. Liu, L. Mei, J. Jiao, A self-powered UV photodetector based on TiO2 nanorod arrays. Nanoscale Res. Lett. 8, 188 (2013)CrossRefGoogle Scholar
  32. 32.
    W.-J. Lee, M.-H. Hon, An ultraviolet photo-detector based on TiO2/water solid-liquid heterojunction. Appl. Phys. Lett. 99, 251102 (2011)CrossRefGoogle Scholar
  33. 33.
    Y. Wang, W. Han, B. Zhao, L. Chen, F. Teng, X. Li, C. Gao, J. Zhou, E. Xie, Performance optimization of self-powered ultraviolet detectors based on photoelectrochemical reaction by utilizing dendriform titanium dioxide nanowires as photoanode. Sol. Energy Mater. Sol. Cells 140, 376–381 (2015)CrossRefGoogle Scholar
  34. 34.
    Y. Zhu, S. Murali, W. Cai, X. Li, J.W. Suk, J.R. Potts, R.S. Ruoff, Graphene and graphene oxide: synthesis, properties, and applications. Adv. Mater. 22, 3906–3924 (2010)CrossRefGoogle Scholar
  35. 35.
    S. Liu, B. Li, H. Kan, H. Liu, B. Xie, X. Zhu, Y. Hu, S. Jiang, Low temperature in situ preparation of reduced graphene oxide/ZnO nanocomposites for highly sensitive photodetectors. J. Mater. Sci. 28, 9403–9409 (2017)Google Scholar
  36. 36.
    A. Bazargan, F. Sharif, S. Mazinani, N. Naderi, High-performance transparent ultraviolet photodetector based on thermally reduced graphene oxide and ZnO thin films. J. Mater. Sci. 28, 11108–11113 (2017)Google Scholar
  37. 37.
    M. Segal, Selling graphene by the ton. Nat. Nanotechnol. 4, 612 (2009)CrossRefGoogle Scholar
  38. 38.
    S.N. Alam, N. Sharma, L. Kumar, Synthesis of graphene oxide (GO) by modified hummers method and its thermal reduction to obtain reduced graphene oxide (rGO). Graphene 6, 1–18 (2017)CrossRefGoogle Scholar
  39. 39.
    D. Voiry, J. Yang, J. Kupferberg, R. Fullon, C. Lee, H.Y. Jeong, H.S. Shin, M. Chhowalla, High-quality graphene via microwave reduction of solution-exfoliated graphene oxide. Science 353, 1413–1416 (2016)CrossRefGoogle Scholar
  40. 40.
    H. Qiao, Z. Huang, X. Ren, H. Yao, S. Luo, P. Tang, X. Qi, J. Zhong, Photoresponse improvement in liquid-exfoliated SnSe nanosheets by reduced graphene oxide hybridization. J. Mater. Sci. 53, 4371–4377 (2018)CrossRefGoogle Scholar
  41. 41.
    W. Hummers, R. Offeman, Functionalized graphene and graphene oxide: materials synthesis and electronic applications. J. Am. Chem. Soc. 80, 1339–1339 (1958)CrossRefGoogle Scholar
  42. 42.
    X. Zhao, X. Ma, J. Sun, D. Li, X. Yang, Enhanced catalytic activities of surfactant-assisted exfoliated WS2 nanodots for hydrogen evolution. ACS Nano 10, 2159–2166 (2016)CrossRefGoogle Scholar
  43. 43.
    A. Berkdemir, H.R. Gutiérrez, A.R. Botello-Méndez, N. Perea-López, A.L. Elías, C.-I. Chia, B. Wang, V.H. Crespi, F. López-Urías, J.-C. Charlier, Identification of individual and few layers of WS2 using Raman spectroscopy. Sci. Rep. 3, 1755 (2013)CrossRefGoogle Scholar
  44. 44.
    F. Withers, T.H. Bointon, D.C. Hudson, M.F. Craciun, S. Russo, Electron transport of WS2 transistors in a hexagonal boron nitride dielectric environment. Sci. Rep. 4, 4967 (2014)CrossRefGoogle Scholar
  45. 45.
    A.S. Pawbake, M.S. Pawar, S.R. Jadkar, D.J. Late, Large area chemical vapor deposition of monolayer transition metal dichalcogenides and their temperature dependent Raman spectroscopy studies. Nanoscale 8, 3008–3018 (2016)CrossRefGoogle Scholar
  46. 46.
    M. Dai, H. Chen, R. Feng, W. Feng, Y. Hu, H. Yang, G. Liu, X. Chen, J. Zhang, C. Xu, A dual-band multilayer inse self-powered photodetector with high performance induced by surface plasmon resonance and asymmetric Schottky junction. ACS Nano 12, 8739–8747 (2018)CrossRefGoogle Scholar
  47. 47.
    M. Long, P. Wang, H. Fang, W. Hu, Progress, challenges, and opportunities for 2D material based photodetectors. Adv. Funct. Mater. 29(19), 1803807 (2018)CrossRefGoogle Scholar
  48. 48.
    C. Xie, C. Mak, X. Tao, F. Yan, Photodetectors based on two-dimensional layered materials beyond graphene. Adv. Funct. Mater. 27, 1603886 (2017)CrossRefGoogle Scholar
  49. 49.
    F. Koppens, T. Mueller, P. Avouris, A. Ferrari, M. Vitiello, M. Polini, Photodetectors based on graphene, other two-dimensional materials and hybrid systems. Nat. Nanotechnol. 9, 780 (2014)CrossRefGoogle Scholar
  50. 50.
    A. Sharma, B. Bhattacharyya, A.K. Srivastava, T.D. Senguttuvan, S. Husale, High performance broadband photodetector using fabricated nanowires of bismuth selenide. Sci. Rep. 6, 19138–19138 (2016)CrossRefGoogle Scholar
  51. 51.
    H. Qiao, J. Yuan, Z. Xu, C. Chen, S. Lin, Y. Wang, J. Song, Y. Liu, Q. Khan, H. Hoh, Broadband photodetectors based on graphene-Bi2Te3 heterostructure. ACS Nano 9, 1886–1894 (2015)CrossRefGoogle Scholar
  52. 52.
    W. Choi, M.Y. Cho, A. Konar, J.H. Lee, G.B. Cha, S.C. Hong, S. Kim, J. Kim, D. Jena, J. Joo, High-detectivity multilayer MoS2 phototransistors with spectral response from ultraviolet to infrared. Adv. Mater. 24, 5832–5836 (2012)CrossRefGoogle Scholar
  53. 53.
    Y. Xue, Y. Zhang, Y. Liu, H. Liu, J. Song, J. Sophia, J. Liu, Z. Xu, Q. Xu, Z. Wang, Scalable production of a few-layer MoS2/WS2 vertical heterojunction array and its application for photodetectors. ACS Nano 10, 573–580 (2015)CrossRefGoogle Scholar
  54. 54.
    W. Zhang, M.-H. Chiu, C.-H. Chen, W. Chen, L.-J. Li, A.T.S. Wee, Role of metal contacts in high-performance phototransistors based on WSe2 monolayers. ACS Nano 8, 8653–8661 (2014)CrossRefGoogle Scholar
  55. 55.
    M. Huang, M. Wang, C. Chen, Z. Ma, X. Li, J. Han, Y. Wu, Broadband black-phosphorus photodetectors with high responsivity. Adv. Mater. 28, 3481–3485 (2016)CrossRefGoogle Scholar
  56. 56.
    X. Ren, Z. Li, Z. Huang, D. Sang, H. Qiao, X. Qi, J. Li, J. Zhong, H. Zhang, Environmentally robust black phosphorus nanosheets in solution: application for self-powered photodetector. Adv. Funct. Mater. 27, 1606834 (2017)CrossRefGoogle Scholar
  57. 57.
    Z. Li, H. Qiao, Z. Guo, X. Ren, Z. Huang, X. Qi, S.C. Dhanabalan, J.S. Ponraj, D. Zhang, J. Li, High-performance photo-electrochemical photodetector based on liquid-exfoliated few-layered InSe nanosheets with enhanced stability. Adv. Funct. Mater. 28, 1705237 (2018)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Yue Tao
    • 1
  • Bo Wang
    • 1
  • Hui Qiao
    • 1
  • Zongyu Huang
    • 1
    Email author
  • Xiang Qi
    • 1
  1. 1.Hunan Key Laboratory for Micro-Nano Energy Materials and Devices, and School of Physics and OptoelectronicXiangtan UniversityHunanPeople’s Republic of China

Personalised recommendations