Photoluminescence and scintillation properties of Eu-doped TeO2-Al2O3-BaO glasses

  • Naoki KawanoEmail author
  • Hiromi Kimura
  • Atsushi Horimoto
  • Kenji Shinozaki
  • Takayuki Yanagida


We synthesized TeO2-Al2O3-BaO glasses with different concentrations of Eu (0, 0.1, 0.5, 1.0 and 5.0 mol%) by the conventional melt-quenching technique to develop scintillator materials. After the synthesis, photoluminescence (PL) and scintillation properties of the samples were investigated systematically. The Eu-doped samples exhibited emissions with peaks approximately at 590 and 620 nm due to the 4f-4f transitions of Eu3+ in PL and scintillation. Among the sample investigated, the 5.0% Eu-doped sample showed the highest PL and scintillation intensities. In addition, decay time constants of the Eu-doped samples in PL and scintillation were about 0.91–0.94 and 0.37–0.51 ms, respectively. Furthermore, the afterglow levels of the samples were estimated to be 179–245 ppm, which was approximately one order of magnitude higher than those of Bi4Ge3O12 and CdWO4.



This work was supported by the Kazuchika Okura Memorial Foundation.


  1. 1.
    M.J. Weber, Scintillation: mechanisms and new crystals. Nucl. Instrum. Methods Res. Sect. A. 527, 9–14 (2004)CrossRefGoogle Scholar
  2. 2.
    S. Yamamoto, K. Kuroda, M. Senda, Scintillator selection for MR-compatible gamma detectors. IEEE Trans. Nucl. Sci. 50, 1683–1685 (2003)CrossRefGoogle Scholar
  3. 3.
    J. Glodo, Y. Wang, R. Shawgo, C. Brecher, R.H. Hawrami, J. Tower, K.S. Shah, New developments in scintillators for security applications. Phys. Procedia. 90, 285–290 (2017)CrossRefGoogle Scholar
  4. 4.
    T. Yanagida, Y. Fujimoto, S. Kurosawa, K. Kamada, H. Takahashi, Y. Fukazawa, M. Nikl, V. Chani, Temperature dependence of scintillation properties of bright oxide scintillators for well-logging. Jpn. J. Appl. Phys. 52, 076401 (2013)CrossRefGoogle Scholar
  5. 5.
    C.W.E. van Eijk, Inorganic-scintillator development. Nucl. Instrum. Methods Res. Sect. A. 460, 1–14 (2001)CrossRefGoogle Scholar
  6. 6.
    S.J. Duclos, Scintillator phosphors for medical imaging. Electrochem. Soc. Interface 7, 34–39 (1988)Google Scholar
  7. 7.
    C.W.E. van Eijk, Inorganic scintillators in medical imaging. Phys. Med. Biol. 47, 85–106 (2002)CrossRefGoogle Scholar
  8. 8.
    R. Hawrami, A.R. Fatah, K.A. Faraj, Advanced scintillator crystal for various radiation detection abstract. J. Asian Sci. Res. 1, 131–138 (2011)Google Scholar
  9. 9.
    W.W. Moses, Scintillator requirements for medical imaging (Inter. Conf. Inorg. Scint, Appli, 1990)Google Scholar
  10. 10.
    Y. Oshima, T. Yasumune, T. Masuda, K. Maehata, K. Ishibashi, T. Ueno, Temperature dependence of Li-glass scintillator response to neutrons. Prog. Nucl. Sci. Technol 1, 296–299 (2011)CrossRefGoogle Scholar
  11. 11.
    T. Yanagida, N. Kawaguchi, Y. Fujimoto, K. Fukuda, Y. Yokota, A. Yamazaki, K. Watanabe, J. Pejchal, A. Uritani, T. Iguchi, A. Yoshikawa, Basic study of europium doped LiCaAlF6 scintillator and its capability for thermal neutron imaging application. Opt. Mater. 33, 1243–1247 (2011)CrossRefGoogle Scholar
  12. 12.
    N. Kawano, M. Akatsuka, H. Kimura, G. Okada, N. Kawaguchi, T. Yanagida, Scintillation and TSL properties of Tb-doped NaPO3-Al(PO3)3 glasses. Radiat. Meas. 117, 52–56 (2018)CrossRefGoogle Scholar
  13. 13.
    T. Yanagida, H. Masai, G. Okada, N. Kawano, N. Kawaguchi, Optical and scintillation properties of 30BaO–(70-x)TiO2–xGeO2 (x = 50, 55, 60) glass-ceramics. J. Non-Cryst. Solids 501, 106–110 (2018)CrossRefGoogle Scholar
  14. 14.
    N. Kawano, N. Kawaguchi, G. Okada, Y. Fujimoto, T. Yanagida, Scintillation and dosimetric properties of Ce-doped strontium aluminoborate glasses. J. Non-Cryst. Solids 482, 154–159 (2018)CrossRefGoogle Scholar
  15. 15.
    H. Samizo, T. Kato, N. Kawano, G. Okada, N. Kawaguchi, T. Yanagida, Photoluminescence, scintillation and TSL properties of Ce-doped Sr(PO3)2 glasses. J. Mater. Sci. 29, 1985–1991 (2018)Google Scholar
  16. 16.
    T. Kuro, G. Okada, N. Kawaguchi, Y. Fujimoto, H. Masai, T. Yanagida, Scintillation properties of rare-earth doped NaPO3-Al(PO3)3 glasses. Opt. Mater. 62, 561–568 (2016)CrossRefGoogle Scholar
  17. 17.
    M. Seshadri, V. Anjos, M.J.V. Bell, Energy transfer process and radiative properties of 1.06 μm emission in Nd3+ doped TeO2-ZnO-Na2O glasses. J. Lumin. 196, 399–405 (2018)CrossRefGoogle Scholar
  18. 18.
    D.J. Robbins, On predicting the maximum efficiency of phosphor systems excited by ionizing radiation. J. Electrochem. Soc. 127, 2694–2702 (1980)CrossRefGoogle Scholar
  19. 19.
    J. Zhao, L. Huang, T. Liang, S. Zhao, S. Xu, Luminescent properties of Eu3+ doped heavy tellurite scintillating glasses. J. Lumin. 205, 342–345 (2019)CrossRefGoogle Scholar
  20. 20.
    W. He, Y.P. Zhang, J.H. Wang, S.X. Wang, H.P. Xia, Luminescence properties of terbium doped oxyfluoride tellurite glasses. Acta Phys. Sin. 60, 042901 (2011)Google Scholar
  21. 21.
    D. Nakauchi, G. Okada, T. Yanagida, Scintillation and dosimetric properties of Eu-doped SrCO3 ceramics prepared by spark plasma sintering method. J. Ceram. Soc. Jpn. 124, 546–549 (2016)CrossRefGoogle Scholar
  22. 22.
    F. Riva, T. Martin, P.A. Douissard, C. Dujardin, Single crystal lutetium oxide thin film scintillators for X-ray imaging. J. Instrum. 11, C10010 (2016)CrossRefGoogle Scholar
  23. 23.
    C.W. Seo, B.K. Cha, S. Jeon, R.K. Kim, Y. Huh, Characterization of indirect X-ray imaging detector based on nanocrystalline gadolinium oxide scintillators for high-resolution imaging application. Nucl. Instrum. Methods Res. Sect. A. 699, 129–133 (2013)CrossRefGoogle Scholar
  24. 24.
    T. Yanagida, K. Kamada, Y. Fujimoto, H. Yagi, T. Yanagitani, Comparative study of ceramic and single crystal Ce:GAGG scintillator. Opt. Mater. 35, 2480–2485 (2013)CrossRefGoogle Scholar
  25. 25.
    T. Yanagida, Y. Fujimoto, T. Ito, K. Uchiyama, K. Mori, Development of X-ray-induced afterglow characterization system. Appl. Phys. Exp. 7, 062401 (2014)CrossRefGoogle Scholar
  26. 26.
    Y. Isokawa, S. Hirano, N. Kawano, G. Okada, N. Kawaguchi, T. Yanagida, Radiation-induced luminescence properties of Tb-doped Li3PO4-B2O3 glasses. Opt. Mater. 76, 28–33 (2018)CrossRefGoogle Scholar
  27. 27.
    Y. Pan, M. Wu, Q. Su, Synthesis of Eu3+-doped calcium and strontium carbonate phosphors at room temperature. Mater. Res. Bull. 38, 1537–1544 (2003)CrossRefGoogle Scholar
  28. 28.
    P. Nachimuthu, R. Jagannathan, Absorption and emission spectral studies of Eu3+-doped PbO-PbF2 glass system. Proc. Indian Acad. Sci. 107, 59–66 (1995)Google Scholar
  29. 29.
    C. Bensalem, M. Mortier, D. Vivien, M. Diaf, Optical investigation of Eu3+:PbF2 ceramics and transparent glass–ceramics. Opt. Mater. 33, 791–798 (2011)CrossRefGoogle Scholar
  30. 30.
    S.M. Dhopte, P.L. Muthal, V.K. Kondawar, S.V. Moharil, Luminescence in CaF2:Eu. J. Lumin. 54, 95–101 (1992)CrossRefGoogle Scholar
  31. 31.
    Y.H. Zhou, J. Lin, S.B. Wang, H.J. Zhang, Preparation of Y3Al5O12: Eu phosphors by citric–gel method and their luminescent properties. Opt. Mater. 20, 13–20 (2002)CrossRefGoogle Scholar
  32. 32.
    E.H. Penill, C.L. Hardin, Y. Kodera, S.A. Basun, D.R. Evans, J.E. Garay, The role of scattering and absorption on the optical properties of birefringent polycrystalline ceramics: modeling and experiments on ruby (Cr:Al2O3). J. Appl. Phys. 119, 023106 (2016)CrossRefGoogle Scholar
  33. 33.
    K. Shinozaki, Y. Fujimoto, G. Okada, N. Kawaguchi, T. Yanagida, T. Akai, M. Koshimizu, K. Asai, J. Mater. Sci. 29(2018), 11824–11829 (1829)Google Scholar
  34. 34.
    E.F. Huerta, I. Padilla, R. Martinez-Martinez, J.L. Hernandez-Pozos, U. Caldiño, C. Falcony, Extended decay times for the photoluminescence of Eu3+ ions in aluminum oxide films through interaction with localized states. Opt. Mater. 34, 1137–1142 (2012)CrossRefGoogle Scholar
  35. 35.
    R. Yadav, A.F. Khan, A. Yadav, H. Chander, D. Haranath, B.K. Gupta, S. Virendra, C. Santa, Intense red-emitting Y4Al2O9:Eu3+ phosphor with short decay time and high color purity for advanced plasma display panel. Opt. Express 17, 22023–22030 (2009)CrossRefGoogle Scholar
  36. 36.
    M. Koshimizu, K. Iwamatsu, M. Taguchi, S. Kurashima, A. Kimura, T. Yanagida, Y. Fujimoto, K. Watanabe, K. Asai, Influence of linear energy transfer on the scintillation decay behavior in a lithium glass scintillator. J. Luimn. 169, 678–681 (2016)CrossRefGoogle Scholar
  37. 37.
    D. Nakauchi, G. Okada, M. Koshimizu, T. Yangida, Storage luminescence and scintillation properties of Eu-doped SrAl2O4 crystals. J. Lumin. 176, 342–346 (2016)CrossRefGoogle Scholar
  38. 38.
    T. Yanagida, G. Okada, Characterizations of optical properties and radiation induced luminescence of Bi-doped La2Zr2O7 transparent ceramics. J. Ceram. Soc. Jpn. 124, 564–568 (2016)CrossRefGoogle Scholar
  39. 39.
    G. Okada, T. Kojima, J. Ushizawa, N. Kawaguchi, T. Yanagida, Radio-photoluminescence observed in non-doped Mg2SiO4 single crystal. Curr. Appl. Phys. 17, 422–426 (2017)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Akita UniversityAkitaJapan
  2. 2.Nara Institute of Science and Technology (NAIST)NaraJapan
  3. 3.National Institute of Advanced Industrial Science and Technology (AIST)OsakaJapan

Personalised recommendations