Advertisement

MemSens: a new detection method for heavy metals based on silver nanoparticle assisted memristive switching principle

  • Aishwarya V. Pawar
  • Sharon S. Kanapally
  • Kalyani D. Kadam
  • Snehal L. Patil
  • Vrushali S. Dongle
  • Sushilkumar A. Jadhav
  • Sungjun KimEmail author
  • Tukaram D. DongaleEmail author
Article
  • 58 Downloads

Abstract

This work reports a new heavy metal sensing and detection methodology based on memristive switching effect. The hysteresis loop and limiting linear characteristic of a memristive device are used to validate the hypothesis of detection of heavy metals by putting them in contact with silver nanoparticles (Ag NPs). The sensing of various heavy metal ions using the proposed methodology was done and the results showed a response towards all tested metal ions. In particular, the selectivity of the Ag NPs towards Cd2+ ions was more than other metal ions. The current against concentration graph for Ag NPs + Cd2+ ions system was obtained which gives the possibility of determination of Cd2+ ion concentration in an unknown sample. The concentration of the Cd2+ ions was varied to test the lower limit of detection of the system and found that the sensor system was able to detect the Cd2+ up to very low concentration. Therefore, the conceptually new heavy metal detection approach is a significant new advancement in heavy metal detection and preparation of portable devices for that purpose.

Notes

Acknowledgements

Dr. T. D. Dongale thank the Shivaji University, Kolhapur for the financial assistance under the ‘Research Initiation Scheme’. This work was supported by a grant from the National Research Foundation of Korea (NRF), funded by the Korea government (MSIP) (2018R1C1B5046454) and (2018K2A9A1A01090636).

Compliance with ethical standards

Conflict of interest

The authors declare no conflict of interest.

Supplementary material

10854_2019_1487_MOESM1_ESM.docx (302 kb)
Supplementary material 1 (DOCX 302 kb)

References

  1. 1.
    M.B. Gmpu, S. Sethuraman, U.M. Krishnan, J.B.B. Rayappan, A review on detection of heavy metal ions in water: an electrochemical approach. Sens. Actuators B 213, 515–533 (2015).  https://doi.org/10.1016/j.snb.2015.02.122 CrossRefGoogle Scholar
  2. 2.
    S. Sikdar, M. Kundu, A review on detection and abatement of heavy metals. ChemBioEng Rev. 5, 18–29 (2018).  https://doi.org/10.1002/cben.201700005 CrossRefGoogle Scholar
  3. 3.
    L. Järup, Hazards of heavy metal contamination. Br. Med. Bull. 68, 167–182 (2003).  https://doi.org/10.1093/bmb/ldg032 CrossRefGoogle Scholar
  4. 4.
    M. Khosraviani, A.R. Pavlov, G.C. Flowers, D.A. Blake, Detection of heavy metals by immunoassay: optimization and validation of a rapid, portable assay for ionic cadmium. Environ. Sci. Technol. 32, 137–142 (1998).  https://doi.org/10.1021/es9703943 CrossRefGoogle Scholar
  5. 5.
    M. Fırat, S. Bakırdere, M.S. Fındıkoğlu, E.B. Kafa, E. Yazıcı, M. Yolcu, Ç. Büyükpınar, D.S. Chormey, S. Sel, F. Turak, Determination of trace amount of cadmium using dispersive liquid-liquid microextraction-slotted quartz tube-flame atomic absorption spectrometry. Spectrochim. Acta B 129, 37–41 (2017).  https://doi.org/10.1016/j.sab.2017.01.006 CrossRefGoogle Scholar
  6. 6.
    H. Karami, M.F. Mousavi, Y. Yamini, M. Shamsipur, On-line preconcentration and simultaneous determination of heavy metal ions by inductively coupled plasma-atomic emission spectrometry. Anal. Chim. Acta 509, 89–94 (2004).  https://doi.org/10.1016/j.aca.2003.12.022 CrossRefGoogle Scholar
  7. 7.
    E. Santoyo, S. Santoyo-Gutiérrez, P.S. Verma, Trace analysis of heavy metals in groundwater samples by ion chromatography with post-column reaction and ultraviolet-visible detection. J. Chromatogr. A 884, 229–241 (2000).  https://doi.org/10.1016/S0021-9673(00)00358-7 CrossRefGoogle Scholar
  8. 8.
    A. Mimendia, A. Legin, A. Merkoçi, M. del Valle, Use of sequential injection analysis to construct a potentiometric electronic tongue: application to the multidetermination of heavy metals. Sens. Actuators B 146, 420–426 (2010).  https://doi.org/10.1016/j.snb.2009.11.027 CrossRefGoogle Scholar
  9. 9.
    M. Miu, A. Angelescu, I. Kleps, M. Simion, Electrochemical sensors for heavy metals detection in liquid media. Int. J. Environ. Anal. Chem. 85, 675–679 (2005).  https://doi.org/10.1080/03067310500146128 CrossRefGoogle Scholar
  10. 10.
    G. Aragay, A. Merkoc, Recent trends in macro-, micro-, and nanomaterial-based tools and strategies for heavy-metal detection. Chem. Rev. 111, 3433–3458 (2011).  https://doi.org/10.1021/cr100383r CrossRefGoogle Scholar
  11. 11.
    X. Mathew, E. Santoyo, Second edition of the international symposium on renewable energy and sustainability (ISRES 2013). J. Mater. Sci. 26, 5525 (2015).  https://doi.org/10.1007/s1085 Google Scholar
  12. 12.
    P. Yu, Z. Zhang, L. Zheng, F. Teng, L. Hu, X. Fang, A novel sustainable flour derived hierarchical nitrogen-doped porous carbon/polyaniline electrode for advanced asymmetric supercapacitors. Adv. Energy Mater. 6, 1601111 (2016).  https://doi.org/10.1002/aenm.201601111 CrossRefGoogle Scholar
  13. 13.
    S. Das, M.J. Hossain, S.F. Leung, A. Lenox, Y. Jung, K. Davis, J.H. He, T. Roy, A leaf-inspired photon management scheme using optically tuned bilayer nanoparticles for ultra-thin and highly efficient photovoltaic devices. Nano Energy 58, 47–56 (2019).  https://doi.org/10.1016/j.nanoen.2018.12.072 CrossRefGoogle Scholar
  14. 14.
    C.H. Lin, B. Cheng, T.Y. Li, J.R.D. Retamal, T.C. Wei, H.C. Fu, X. Fang, J.H. He, Orthogonal lithography for halide perovskite optoelectronic nanodevices. ACS Nano 13, 1168–1176 (2019).  https://doi.org/10.1021/acsnano.8b05859 Google Scholar
  15. 15.
    S. Han, L. Hu, N. Gao, A. Al-ghamdi, X. Fang, Efficient self-assembly synthesis of uniform CdS spherical nanoparticles-Au nanoparticles hybrids with enhanced photoactivity. Adv. Funct. Mater. 24, 3725–3733 (2014).  https://doi.org/10.1002/adfm.201400012 CrossRefGoogle Scholar
  16. 16.
    H. Yang, Y. Tang, X. Huang, L. Wang, Q. Zhang, Activated porous carbon derived from walnut shells with promising material properties for supercapacitors. J. Mater. Sci. 28, 18637–18645 (2017).  https://doi.org/10.1007/s10854-017-7813-6 Google Scholar
  17. 17.
    A.P. Rananavare, S.J. Kadam, S.V. Prabhu, S.S. Chavan, P.V. Anbhule, T.D. Dongale, Organic non-volatile memory device based on cellulose fibers. Mater. Lett. 232, 99–102 (2018).  https://doi.org/10.1016/j.matlet.2018.08.091 CrossRefGoogle Scholar
  18. 18.
    T.D. Dongale, N.D. Desai, K.V. Khot, C.K. Volos, P.N. Bhosale, R.K. Kamat, An electronic synapse device based on TiO2 thin film memristor. J. Nanoelectron. Optoelectron. 13, 68–75 (2018).  https://doi.org/10.1166/jno.2018.2297 CrossRefGoogle Scholar
  19. 19.
    H. Abunahla, B. Mohammad, L. Mahmoud, M. Darweesh, M. Alhawari, M.A. Jaoude, G.W. Hitt, MemSens: memristor-based radiation sensor. IEEE Sens. J. 18, 3198–3205 (2018).  https://doi.org/10.1109/JSEN.2018.2808285 CrossRefGoogle Scholar
  20. 20.
    C. Tan, Z. Liu, W. Huang, H. Zhang, Non-volatile resistive memory devices based on solution-processed ultrathin two-dimensional nanomaterials. Chem. Soc. Rev. 44, 2615–2628 (2015).  https://doi.org/10.1039/c4cs00399c CrossRefGoogle Scholar
  21. 21.
    E. Gale, TiO2-based memristors and ReRAM: materials, mechanisms and models (a review). Semicond. Sci. Technol. 29, 104004 (2014).  https://doi.org/10.1088/0268-1242/29/10/104004 CrossRefGoogle Scholar
  22. 22.
    F. Budiman, D.G.O. Hernowo, R.R. Pandey, H. Tanaka, Recent progress on fabrication of memristor and transistor-based neuromorphic devices for high signal processing speed with low power consumption. Jpn. J. Appl. Phys. 57, 03EA06 (2018).  https://doi.org/10.7567/jjap.57.03ea06 CrossRefGoogle Scholar
  23. 23.
    Y. Li, Z. Wang, R. Midya, Q. Xia, J.J. Yang, Review of Memristor devices in neuromorphic computing: materials sciences and device challenges. J. Phys. D. 51, 503002 (2018).  https://doi.org/10.1088/1361-6463/aade3f CrossRefGoogle Scholar
  24. 24.
    S. Carrara, D. Sacchetto, M. Doucey, C. Baj-rossi, G. De Micheli, Y. Leblebici, Chemical memristive-biosensors: a new detection method by using nanofabricated memristors. Sens. Actuators B 171–172, 449–457 (2012).  https://doi.org/10.1016/j.snb.2012.04.089 CrossRefGoogle Scholar
  25. 25.
    D.S.M. Doucey, G. De Micheli, Y. Leblebici, New insight on bio-sensing by nano-fabricated memristors. Nano Fabr. 338, 1–3 (2011).  https://doi.org/10.1007/s12668-011-0002-9 Google Scholar
  26. 26.
    X. Wang, Y. Chen, Y. Gu, H. Li, Spintronic memristor temperature sensor. IEEE Electron. Dev. Lett. 31, 20–22 (2010).  https://doi.org/10.1109/LED.2009.2035643 CrossRefGoogle Scholar
  27. 27.
    N.S. MohamadHadis, A. AbdManaf, S.H. Ngalim, S.H. Herman, Fabrication and characterisation of fluidic based memristor sensor for liquid with hydroxyl group. Sens. Bio-Sens. Res. 14, 21–29 (2017).  https://doi.org/10.1016/j.sbsr.2017.04.002 CrossRefGoogle Scholar
  28. 28.
    S. Chakrabarti, S. Maikap, S. Samanta, S. Jana, A. Roy, J.T. Qiu, Scalable cross-point resistive switching memory and mechanism through an understanding of H2O2/glucose sensing using an IrOx/Al2O3/W structure. Phys. Chem. Chem. Phys. 19, 25938–25948 (2017).  https://doi.org/10.1039/c7cp05089e CrossRefGoogle Scholar
  29. 29.
    H. Abunahla, M.A. Jaoude, C.J. O’Kelly, B. Mohammad, Sol-gel/drop-coated micro-thick TiO2 memristors for γ-ray sensing. Mater. Chem. Phys. 184, 72–81 (2016).  https://doi.org/10.1016/j.matchemphys.2016.09.027 CrossRefGoogle Scholar
  30. 30.
    F. Puppo, M. Di Ventra, G. De Micheli, S. Carrara, Memristive sensors for pH measure in dry conditions. Surf. Sci. 624, 76–79 (2014).  https://doi.org/10.1016/j.susc.2014.01.016 CrossRefGoogle Scholar
  31. 31.
    Y. Yao, H. Wu, J. Ping, Simultaneous determination of Cd(II) and Pb(II) ions in honey and milk samples using a single-walled carbon nanohorns modified screen-printed electrochemical sensor. Food Chem. 274, 8–15 (2018).  https://doi.org/10.1016/j.foodchem.2018.08.110 CrossRefGoogle Scholar
  32. 32.
    M. Chen, F.Y.H. Kutsanedzie, W. Cheng, H. Li, Q. Chen, Ratiometric fluorescence detection of Cd2+ and Pb2+ by inner filter-based upconversion nanoparticle-dithizone nanosystem. Microchem. J. 144, 296–302 (2019).  https://doi.org/10.1016/j.microc.2018.09.022 CrossRefGoogle Scholar
  33. 33.
    M. Esmaeilzadeh, Synthesis and application of MIL-101(Fe)/1,5-diphenylcarbazide functionalized magnetite nanoparticles composite for trace determination of cadmium in fish and canned tuna. Microchem. J. 145, 367–372 (2019).  https://doi.org/10.1016/j.microc.2018.10.058 CrossRefGoogle Scholar
  34. 34.
    X. Liu, N. Li, M.M. Xu, C. Jiang, J. Wang, G. Song, Y. Wang, Turn on fluorescent detection for Cd2+ based on surfactant controlled squaraine aggregation. Spectrochim. Acta A 208, 236–242 (2018).  https://doi.org/10.1016/j.saa.2018.10.012 CrossRefGoogle Scholar
  35. 35.
    D. Chauvin, J. Bell, I. Leray, I. Ledoux-Rak, C.T. Nguyen, Label-free optofluidic sensor based on polymeric microresonator for the detection of cadmium ions in tap water. Sens. Actuators B 280, 77–85 (2018).  https://doi.org/10.1016/j.snb.2018.10.053 CrossRefGoogle Scholar
  36. 36.
    F. Mo, Z. Ma, T. Wu, M. Liu, Y. Zhang, H. Li, S. Yao, Holey reduced graphene oxide inducing sensitivity enhanced detection nanoplatform for cadmium ions based on glutathione-gold nanocluster. Sens. Actuators B 281, 486–492 (2018).  https://doi.org/10.1016/J.SNB.2018.10.133 CrossRefGoogle Scholar
  37. 37.
    B.S. Boruah, R. Biswas, An optical fiber based surface plasmon resonance technique for sensing of lead ions: a toxic water pollutant. Opt. Fiber Technol. 46, 152–156 (2018).  https://doi.org/10.1016/j.yofte.2018.10.007 CrossRefGoogle Scholar
  38. 38.
    S. Dehdashtian, M. Shamsipur, Modification of gold surface by electrosynthesized mono aza crown ether substituted catechol-terminated alkane dithiol and its application as a new electrochemical sensor for trace detection of cadmium ions. Colloids Surf. B 171, 494–500 (2018).  https://doi.org/10.1016/j.colsurfb.2018.07.063 CrossRefGoogle Scholar
  39. 39.
    H. Eranjaneya, P.S. Adarakatti, A. Siddaramanna, P. Malingappa, G.T. Chandrappa, Citric acid assisted synthesis of manganese tungstate nanoparticles for simultaneous electrochemical sensing of heavy metal ions. Mater. Sci. Semicond. Process. 86, 85–92 (2018).  https://doi.org/10.1016/j.mssp.2018.06.020 CrossRefGoogle Scholar
  40. 40.
    D. Gounden, S. Khene, N. Nombona, Electroanalytical detection of heavy metals using metallophthalocyanine and silica-coated iron oxide composites. Chem. Pap. 72, 3043–3056 (2018).  https://doi.org/10.1007/s11696-018-0545-0 CrossRefGoogle Scholar
  41. 41.
    Y. Lu, X. Liang, J. Xu, Z. Zhao, G. Tian, Synthesis of CuZrO3 nanocomposites/graphene and their application in modified electrodes for the co-detection of trace Pb(II) and Cd(II). Sens. Actuators B 273, 1146–1155 (2018).  https://doi.org/10.1016/j.snb.2018.06.104 CrossRefGoogle Scholar
  42. 42.
    Y.Y. Zhang, X.Z. Chen, X.Y. Liu, M. Wang, J.J. Liu, G. Gao, X.Y. Zhang, R.Z. Sun, S.C. Hou, H.M. Wang, A highly sensitive multifunctional sensor based on phenylene-acetylene for colorimetric detection of Fe2+ and ratiometric fluorescent detection of Cd2+ and Zn2+. Sens. Actuators B 273, 1077–1084 (2018).  https://doi.org/10.1016/j.snb.2018.07.012 CrossRefGoogle Scholar
  43. 43.
    V.K. Shukla, R.S. Yadav, P. Yadav, A.C. Pandey, Green synthesis of nanosilver as a sensor for detection of hydrogen peroxide in water. J. Hazard. Mater. 213–214, 161–166 (2012).  https://doi.org/10.1016/j.jhazmat.2012.01.071 CrossRefGoogle Scholar
  44. 44.
    J.Y. Song, B.S. Kim, Rapid biological synthesis of silver nanoparticles using plant leaf extracts. Bioprocess Biosyst. Eng. 32, 79–84 (2009).  https://doi.org/10.1007/s00449-008-0224-6 CrossRefGoogle Scholar
  45. 45.
    Y.V. Pershin, M. Di Ventra, Memory effects in complex materials and nanoscale systems. Adv. Phys. 60, 145–227 (2011).  https://doi.org/10.1080/00018732.2010.544961 CrossRefGoogle Scholar
  46. 46.
    V.S. Dongle, A.A. Dongare, N.B. Mullani, P.S. Pawar, P.B. Patil, J. Heo, T.J. Park, T.D. Dongale, Development of self-rectifying ZnO thin film resistive switching memory device using successive ionic layer adsorption and reaction method. J. Mater. Sci. 29, 18733–18741 (2018).  https://doi.org/10.1007/s10854-018-9997-9 Google Scholar
  47. 47.
    T.D. Dongale, K.V. Khot, S.V. Mohite, N.D. Desai, S.S. Shinde, V.L. Patil, S.A. Vanalkar, A.V. Moholkar, K.Y. Rajpure, P.N. Bhosale, P.S. Patil, P.K. Gaikwad, R.K. Kamat, Effect of write voltage and frequency on the reliability aspects of memristor-based RRAM. Int. Nano Lett. 7, 209–216 (2017).  https://doi.org/10.1007/s40089-017-0217-z CrossRefGoogle Scholar
  48. 48.
    T.D. Dongale, K.P. Patil, P.K. Gaikwad, R.K. Kamat, Investigating conduction mechanism and frequency dependency of nanostructured memristor device. Mat. Sci. Semicon. Proc. 38, 228–233 (2015).  https://doi.org/10.1016/j.mssp.2015.04.033 CrossRefGoogle Scholar
  49. 49.
    T.D. Dongale, P.J. Patil, N.K. Desai, P.P. Chougule, S.M. Kumbhar, P.P. Waifalkar, P.B. Patil, R.S. Vhatkar, M.V. Takale, P.K. Gaikwad, R.K. Kamat, TiO2 based nanostructured memristor for RRAM and Neuromorphic applications: a simulation approach. Nano Converg. 3, 1–7 (2016).  https://doi.org/10.1186/s40580-016-0076-8 CrossRefGoogle Scholar
  50. 50.
    S.R. Patil, M.Y. Chougale, T.D. Rane, S.S. Khot, A.A. Patil, O.S. Bagal, S.D. Jadhav, A.D. Sheikh, S. Kim, T.D. Dongale, Solution-processable ZnO thin film memristive device for resistive random access memory application. Electronics 7, 445 (2018).  https://doi.org/10.3390/electronics7120445 CrossRefGoogle Scholar
  51. 51.
    M. Li, H. Gou, I. Al-Ogaidi, N. Wu, Nanostructured sensors for detection of heavy metals: a review. ACS Sustain. Chem. Eng. 1, 713–723 (2013).  https://doi.org/10.1021/sc400019a CrossRefGoogle Scholar
  52. 52.
    B. Molleman, T. Hiemstra, Time, pH, and size dependency of silver nanoparticle dissolution: the road to equilibrium. Environ. Sci. Nano. 4, 1314–1327 (2017).  https://doi.org/10.1039/c6en00564k CrossRefGoogle Scholar
  53. 53.
    C.-M. Ho, S.K.-W. Yau, C.-N. Lok, M.-H. So, C.-M. Che, Oxidative dissolution of silver nanoparticles by biologically relevant oxidants: a Kinetic and mechanistic study. Chem. Asian J. 5, 285–293 (2010).  https://doi.org/10.1002/asia.200900387 CrossRefGoogle Scholar
  54. 54.
    S. Garg, H. Rong, C.J. Miller, T.D. Waite, Oxidative dissolution of silver nanoparticles by chlorine: implications to silver nanoparticle fate and toxicity. Environ. Sci. Technol. 50, 3890–3896 (2016).  https://doi.org/10.1021/acs.est.6b00037 CrossRefGoogle Scholar
  55. 55.
    Z. Adamczyk, M. Oćwieja, H. Mrowiec, S. Walas, D. Lupa, Oxidative dissolution of silver nanoparticles: a new theoretical approach. J. Colloid Interface Sci. 469, 355–364 (2016).  https://doi.org/10.1016/j.jcis.2015.12.051 CrossRefGoogle Scholar
  56. 56.
    K. Loza, J. Diendorf, C. Sengstock, L. Ruiz-Gonzalez, J.M. Gonzalez-Calbet, M. Vallet-Regi, M. Köller, M. Epple, The dissolution and biological effects of silver nanoparticles in biological media. J. Mater. Chem. B. 2, 1634–1643 (2014).  https://doi.org/10.1039/c3tb21569e CrossRefGoogle Scholar
  57. 57.
    N. Ruecha, N. Rodthongkum, D.M. Cate, J. Volckens, O. Chailapakul, C.S. Henry, Sensitive electrochemical sensor using a graphene–polyaniline nanocomposite for simultaneous detection of Zn(II), Cd(II), and Pb(II). Anal. Chim. Acta 874, 40–48 (2015)CrossRefGoogle Scholar
  58. 58.
    N.A. Rahman, N.A. Yusof, N.A.M. Maamor, S.M.M. Noor, Development of electrochemical sensor for simultaneous determination of Cd (II) and Hg(II) ion by exploiting newly synthesized cyclic dipeptide. Int. J. Electrochem. Sci. 7, 186–196 (2012)Google Scholar
  59. 59.
    Y. Wei, C. Gao, F.L. Meng, H.H. Li, L. Wang, J.H. Liu, X.J. Huang, SnO2/reduced graphene oxide nanocomposite for the simultaneous electrochemical detection of cadmium(II), lead(II), copper(II), and mercury(II): an interesting favorable mutual interference. J. Phys. Chem. C 116, 1034–1041 (2011)CrossRefGoogle Scholar
  60. 60.
    Y. Zhang, Z. Zhang, D. Yin, J. Li, R. Xie, W. Yang, Turn-on fluorescent InP nanoprobe for detection of cadmium ions with high selectivity and sensitivity. ACS Appl. Mater. Interfaces 5, 9709–9713 (2013)CrossRefGoogle Scholar
  61. 61.
    J. Qian, K. Wang, C. Wang, C. Ren, Q. Liu, N. Hao, K. Wang, Ratiometric fluorescence nanosensor for selective and visual detection of cadmium ions using quencher displacement-induced fluorescence recovery of CdTe quantum dots-based hybrid probe. Sens. Actuators B 241, 1153–1160 (2017)CrossRefGoogle Scholar
  62. 62.
    J. Yin, T. Wu, J. Song, Q. Zhang, S. Liu, R. Xu, H. Duan, SERS-active nanoparticles for sensitive and selective detection of cadmium ion (Cd2+). Chem. Mater. 23, 4756–4764 (2011)CrossRefGoogle Scholar
  63. 63.
    Y. Liu, Y. Lai, G. Yang, C. Tang, Y. Deng, S. Li, Z. Wang, Cd-aptamer electrochemical biosensor based on AuNPs/CS modified glass carbon electrode. J. Biomed. Nanotech. 13, 1253–1259 (2017)CrossRefGoogle Scholar
  64. 64.
    Y. Guo, Y. Zhang, H. Shao, Z. Wang, X. Wang, X. Jiang, Label-free colorimetric detection of cadmium ions in rice samples using gold nanoparticles. Anal. Chem. 86, 8530–8534 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Computational Electronics and Nanoscience Research Laboratory, School of Nanoscience and BiotechnologyShivaji UniversityKolhapurIndia
  2. 2.School of Nanoscience and BiotechnologyShivaji UniversityKolhapurIndia
  3. 3.School of Electronics EngineeringChungbuk National UniversityCheongjuRepublic of Korea

Personalised recommendations