Conversion of the yellow to blue emission of CdSe quantum dots (QDs) via ZnSe shell growth

  • F. Heydaripour
  • M. MolaeiEmail author
  • M. Karimipour
  • F. Dehghan
  • E. Mollahosseini
Original Research


In this research, CdSe QDs were synthesized via a microwave approach. ZnSe shell was grown on the CdSe QDs using a simple, room temperature and rapid photochemical approach. Synthesized QDs were characterized by means of the different analyses such as XRD, FESEM, TEM, EDAX, UV–Vis and PL. CdSe synthesized QDs indicated a broad band (FWHM of about 120 nm) yellow surface trap states emission between 450 and 800 nm. By successful growth of the ZnSe shell broad band trap states emission of the CdSe QDs was completely converted to a narrow band and high intense blue emission with FWHM of about 40 nm which is a unique result for water soluble QDs.



  1. 1.
    M. Molaei, M. Marandi, E. Saievar-Iranizad, N. Taghavinia, B. Liu, H.D. Sun, X.W. Sun, J. Lumin. 132, 467–473 (2012)CrossRefGoogle Scholar
  2. 2.
    T. Xuan, X. Wang, G. Zhu, H. Li, L. Pan, Z. Sun, J. Alloys Compd. 558, 105–108 (2013)CrossRefGoogle Scholar
  3. 3.
    F. Dehghan, M. Molaei, M. Karimipour, A.R. Bahador, Mater. Chem. Phys 206, 76–84 (2018)CrossRefGoogle Scholar
  4. 4.
    X.L. Rong, Q. Zhao, G.H. Tao, Chin. Chem. Lett. 23, 961–964 (2012)CrossRefGoogle Scholar
  5. 5.
    K. Salini, K.S. Rahul, V. Mathew, J. Phys. Chem. Solids 88, 31–34 (2016)CrossRefGoogle Scholar
  6. 6.
    N.S.A. Eom, T.S. Kim, Y.H. Choa, W.B. Kim, B.S. Kim, B.S. Kim, Mater. Lett. 99, 14–17 (2013)CrossRefGoogle Scholar
  7. 7.
    P. Reiss, J. Bleuse, A. Pron, Nano Lett. 2, 781–784 (2002)CrossRefGoogle Scholar
  8. 8.
    R.K. Ratnesh, M.S. Mehata, Opt. Mater. 64, 250–256 (2017)CrossRefGoogle Scholar
  9. 9.
    M. Molaei, S. Abbasi, M. Karimipour, F. Dehghan, Mat. Chem. Phys. 216, 186–190 (2018)CrossRefGoogle Scholar
  10. 10.
    L. Filipponi, D. Sutherland, Nanotechnologies: Principles, Applications, Implications and Hands-on Activities (Publications Office of the European Union, Luxembourg, 2013)Google Scholar
  11. 11.
    I.O. Sosa, C. Nogues, R.G. Barrera, J. Phys. Chem. B 107, 6269–6275 (2003)CrossRefGoogle Scholar
  12. 12.
    C.P. Pool, F.J. Owens, Introduction to Nanotechnology (Wiley, Hoboken, 2003)Google Scholar
  13. 13.
    M. Kohler, W. Fritzsche, Nanotechnology: An Introduction to Nanostructuring Techniques (Wiley-VCH, Weinheim, 2008)Google Scholar
  14. 14.
    J. Zhu, S.N. Wang, J.J. Li, J.W. Zhao, J. Lumin. 199, 216–224 (2018)CrossRefGoogle Scholar
  15. 15.
    S. Abbasi, M. Molaie, M. Karimipour, Luminescence 32, 1137–1144 (2017)CrossRefGoogle Scholar
  16. 16.
    M. Dargahzadeh, M. Molaie, M. Karimipour, J. Lumin. 203, 723–729 (2018)CrossRefGoogle Scholar
  17. 17.
    M. Mehrjoo, M. Molaei, M. Karimipour, Mater. Chem. Phys. 201, 165–169 (2017)CrossRefGoogle Scholar
  18. 18.
    Y.H. Choa, Y.T. Kwon, Y.M. Choi, K.H. Kim, C.G. Lee, K.J. Lee, B.S. Kim, Surf. Coat. Technol. 259, 83–86 (2014)CrossRefGoogle Scholar
  19. 19.
    S.K. Tripathi, G. Kaur, Spectrosc. AIP Conf. Proc. 1536, 45–46 (2013)Google Scholar
  20. 20.
    R. Khafajeh, M. Molaei, M. Karimipour, Luminescence 32, 581–587 (2017)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • F. Heydaripour
    • 1
  • M. Molaei
    • 1
    Email author
  • M. Karimipour
    • 1
  • F. Dehghan
    • 1
  • E. Mollahosseini
    • 1
  1. 1.Department of Physics, Faculty of ScienceVali-e-Asr UniversityRafsanjanIran

Personalised recommendations