Photoluminescence properties of gadolinium phosphate nanoprisms doped with lanthanide ions for multicolor live cell imaging

  • Shuangshuang Wu
  • Jinchang YinEmail author
  • Hongbin Qu
  • Anming Li
  • Lizhi Liu
  • Yuanzhi ShaoEmail author


Lanthanide fluorescence nanoprobe is versatile in multicolor cell imaging, although it still faces a great challenge in improving its luminescent efficiency. Herein, we validated the feasibility of lanthanide ions co-doped gadolinium phosphate nanocrystals serving as a safe, effective and color-tunable fluorescence probe for live cell imaging. Well-crystallized hexagonal phase GdPO4 nanoparticles with multi-morphologies such as nanowires, nanorods, tetragonal nanocubes and hexagonal nanoprisms were synthesized via a typical hydrothermal method. We have systematically investigated the synthesis of different morphologies of GdPO4 nanoparticles through adjusting their processing parameters. The nanoparticles can gain a bright color-tunable photoluminescence from red, orange, yellow to green region when the GdPO4 nanoparticles are co-doped with Eu3+ and Tb3+ ions. The Tb3+ doping significantly enhances the characteristic 4f → 4f transitions of Eu3+ owing to a specific cross-relaxation process from Tb3+ to Eu3+ ions; the mechanism underlying the cross relaxation was exposited in detail. Further biological experiments in vitro proved that the prepared nanoprisms could exhibit a favourable biocompatibility with negligible toxicity. The current investigation manifests a high potential of the nanoparticles applicable to fluorescence imaging probe for live cells.



The study was supported by the National Natural Science Foundation of China (Grant No. 11274394), the Fundamental Research Funds for the Central Universities (Grant No. 11lgjc12, 21618310), the Special Program for Applied Research on Super Computation of the NSFC-Guangdong Joint Fund (the second phase) under Grant No. U1501501, the Natural Science Foundation of Guangdong Province under Grant No. 2018030310187. The authors are gratitude to Shanghai R&S biotechnology Co., Ltd for their help in toxicity bioassays. Particularly, the authors would like to acknowledge the Tianhe-2 National Super Computer Center in Guangzhou for its financial support in material design and simulation. And the authors are grateful to Ms. Yanting WU and Mr. Deqi Chen for their assistance in the academic editing of this manuscript.

Supplementary material

10854_2019_1481_MOESM1_ESM.doc (5.4 mb)
Supplementary material 1 (DOC 5481 kb)


  1. 1.
    M.P. Robin, P. Wilson, A.B. Mabire, J.K. Kiviaho, J.E. Raymond, D.M. Haddleton, R.K. O’Reilly, J. Am. Chem. Soc. 135, 2875–2878 (2013)CrossRefGoogle Scholar
  2. 2.
    J. Liu, J. Liu, W. Liu, H. Zhang, Z. Yang, B. Wang, F. Chen, H. Chen, Inorg. Chem. 54, 7725–7734 (2015)CrossRefGoogle Scholar
  3. 3.
    M. Schuelke, Nat. Biotechnol. 18, 233–234 (2000)CrossRefGoogle Scholar
  4. 4.
    R. Atchudan, T. Edison, K.R. Aseer, S. Perumal, N. Karthik, Y.R. Lee, Biosens. Bioelectron. 99, 303–311 (2018)CrossRefGoogle Scholar
  5. 5.
    L. Sun, X. Ge, J. Liu, Y. Qiu, Z. Wei, B. Tian, L. Shi, Nanoscale 6, 13242–13252 (2014)CrossRefGoogle Scholar
  6. 6.
    Z. Chen, X. Wu, S. Hu, P. Hu, H. Yan, Z. Tang, Y. Liu, J. Mater. Chem. C 3, 153–161 (2015)CrossRefGoogle Scholar
  7. 7.
    X. Gao, Y. Cui, R.M. Levenson, L.W. Chung, S. Nie, Nat. Biotechnol. 22, 969–976 (2004)CrossRefGoogle Scholar
  8. 8.
    Q. Zhang, P. Wang, X. Li, Y. Yang, X. Liu, F. Zhang, Y. Ling, Y. Zhou, J. Mater. Chem. B 5, 3765–3770 (2017)CrossRefGoogle Scholar
  9. 9.
    W. Zheng, P. Huang, D. Tu, E. Ma, H. Zhu, X. Chen, Chem. Soc. Rev. 44, 1379–1415 (2015)CrossRefGoogle Scholar
  10. 10.
    T. Gayathri, R. Arun Kumar, S. Dhilipkumaran, C.K. Jayasankar, P. Saravanan, B. Devanand, J. Mater. Sci. 30, 6860–6867 (2019)Google Scholar
  11. 11.
    X. Wang, R.R. Valiev, T.Y. Ohulchanskyy, H. Agren, C. Yang, G. Chen, Chem. Soc. Rev. 46, 4150–4167 (2017)CrossRefGoogle Scholar
  12. 12.
    V.B. Pawade, A. Zanwar, R.P. Birmod, S.J. Dhoble, L.F. Koao, J. Mater. Sci. 28, 16306–16313 (2019)Google Scholar
  13. 13.
    S. Fischer, N.D. Bronstein, J.K. Swabeck, E.M. Chan, A.P. Alivisatos, Nano Lett. 16, 7241–7247 (2016)CrossRefGoogle Scholar
  14. 14.
    S. Kim, T.Y. Ohulchanskyy, H.E. Pudavar, R.K. Pandey, P.N. Prasad, J. Am. Chem. Soc. 129, 2669–2675 (2007)CrossRefGoogle Scholar
  15. 15.
    S. Kim, H.E. Pudavar, A. Bonoiu, P.N. Prasad, Adv. Mater. 19, 3791–3795 (2007)CrossRefGoogle Scholar
  16. 16.
    R. Kumar, I. Roy, T.Y. Ohulchanskyy, L.N. Goswami, A.C. Bonoiu, E.J. Bergey, K.M. Tramposch, A. Maitra, P.N. Prasad, ACS Nano. 2(3), 449–456 (2008)CrossRefGoogle Scholar
  17. 17.
    S. Heer, O. Lehmann, M. Haase, H.U. Gudel, Angew. Chem. Int. Ed. 42, 3179–3182 (2003)CrossRefGoogle Scholar
  18. 18.
    Y.S. Yoon, B.I. Lee, K.S. Lee, H. Heo, J.H. Lee, S.H. Byeon, I.S. Lee, Chem. Commun. 46, 3654–3656 (2010)CrossRefGoogle Scholar
  19. 19.
    Y. Park, K. Lee, Y. Suh, T. Hyeon, Chem. Soc. Rev. 44, 1302–1307 (2015)CrossRefGoogle Scholar
  20. 20.
    F. Auzel, Chem. Rev. 104(1), 139–174 (2004)CrossRefGoogle Scholar
  21. 21.
    D.V. Talapin, C.B. Murray, Science 310, 86–89 (2005)CrossRefGoogle Scholar
  22. 22.
    V. Mahalingam, F. Vetrone, R. Naccache, A. Speghini, J.A. Capobianco, Adv. Mater. 21, 4025–4028 (2009)CrossRefGoogle Scholar
  23. 23.
    S. Yu, A.D. Watson, Chem. Rev. 99, 2353–2377 (1999)CrossRefGoogle Scholar
  24. 24.
    S. Zeng, H. Wang, W. Lu, Z. Yi, L. Rao, H. Liu, J. Hao, Biomaterials 35, 2934–2941 (2014)CrossRefGoogle Scholar
  25. 25.
    Q. Cheng, J. Sui, W. Cai, Nanoscale 4, 779–784 (2012)CrossRefGoogle Scholar
  26. 26.
    A. Louie, Chem. Rev. 110(5), 3146–3195 (2010)CrossRefGoogle Scholar
  27. 27.
    P. Hänninen, H. Härmä, Lanthanide Luminescence: Photophysical, Analytical and Biological Aspects (Springer, Berlin, 2011), pp. 1–45CrossRefGoogle Scholar
  28. 28.
    Z. Xu, Y. Cao, C. Li, X. Zhai, S. Huang, X. Kang, M. Shang, D. Yang, Y. Dai, J. Lin, J. Mater. Chem. 21(11), 3686–3694 (2011)CrossRefGoogle Scholar
  29. 29.
    Z. Li, Y. Tao, S. Huang, N. Gao, J. Ren, X. Qu, Chem. Commun. 49, 7129–7131 (2013)CrossRefGoogle Scholar
  30. 30.
    K. Singh, S. Singh, P. Srivastava, S. Sivakumar, A.K. Patra, Chem. Commun. 53, 6144–6147 (2017)CrossRefGoogle Scholar
  31. 31.
    W. Di, M. Willinger, R. Ferreira, X. Ren, S. Lu, N. Pinna, J. Phys. Chem. C 112, 18815–18820 (2008)CrossRefGoogle Scholar
  32. 32.
    A. Li, D. Xu, H. Lin, S. Yang, Y. Shao, Y. Zhang, Z. Chen, RSC Adv. 5, 45693–45702 (2015)CrossRefGoogle Scholar
  33. 33.
    Y. Fang, A. Xu, R. Song, H. Zhang, L. You, J.C. Yu, H. Liu, J. Am. Chem. Soc. 125, 16025–16034 (2003)CrossRefGoogle Scholar
  34. 34.
    S. Rodriguez-Liviano, A.I. Becerro, D. Alcantara, V. Grazu, J.M. de la Fuente, M. Ocana, Inorg. Chem. 52, 647–654 (2013)CrossRefGoogle Scholar
  35. 35.
    A. Huignard, T. Gacoin, J. Boilot, Chem. Mater. 12, 1090–1094 (2000)CrossRefGoogle Scholar
  36. 36.
    A. Huignard, V. Buissette, A. Franville, T. Gacoin, J. Boilot, J. Phys. Chem. B 107, 6754–6759 (2003)CrossRefGoogle Scholar
  37. 37.
    T. Gorai, U. Maitra, J. Mater. Chem. B 6, 2143–2150 (2018)CrossRefGoogle Scholar
  38. 38.
    S. Lu, J. Zhang, J. Zhang, H. Zhao, Y. Luo, X. Ren, Nanotechnology 21, 365709 (2010)CrossRefGoogle Scholar
  39. 39.
    X. Kuang, H. Liu, W. Hu, Y. Shao, Dalton Trans. 43, 12321–12328 (2014)CrossRefGoogle Scholar
  40. 40.
    Z. Yi, W. Lu, C. Qian, T. Zeng, L. Yin, H. Wang, L. Rao, H. Liu, S. Zeng, Biomater. Sci. 2, 1404–1411 (2014)CrossRefGoogle Scholar
  41. 41.
    R.C.L. Mooney, Acta Cryst. 3, 337–340 (1950)CrossRefGoogle Scholar
  42. 42.
    X. Wang, Y. Li, Angew. Chem. Int. Ed. 41(24), 4790–4793 (2002)CrossRefGoogle Scholar
  43. 43.
    D. Cao, T. Shen, P. Liang, X. Chen, H. Shu, J. Phys. Chem. C 119, 4294–4301 (2015)CrossRefGoogle Scholar
  44. 44.
    V.G. Dubrovskii, Appl. Phys. Lett. 104, 053110–053115 (2014)CrossRefGoogle Scholar
  45. 45.
    J. Cho, C.H. Kim, RSC Adv. 4, 31385–31392 (2014)CrossRefGoogle Scholar
  46. 46.
    M. Adachi, D.J. Lockwood, Self-organized nanoscale materials (Springer, Berlin, 2011), pp. 1–333Google Scholar
  47. 47.
    X. Zhang, H. Luo, W. Zhong, Sci. China Ser. E-Technol. Sci. 47(2), 191–202 (2004)CrossRefGoogle Scholar
  48. 48.
    R.L. Parker, Solid State Phys. 25, 151–299 (1970)CrossRefGoogle Scholar
  49. 49.
    B.R. Judd, Phys. Rev. 127, 750 (1962)CrossRefGoogle Scholar
  50. 50.
    G.S. Ofelt, J. Chem. Phys. 37, 511 (1962)CrossRefGoogle Scholar
  51. 51.
    D. Parker, J.A. Gareth Williams, J. Chem. Soc., Dalton Trans. 18, 3613–3628 (1996)CrossRefGoogle Scholar
  52. 52.
    K. Hanaoka, K. Kikuchi, S. Kobayashi, T. Nagano, J. Am. Chem. Soc. 129, 13502–13509 (2007)CrossRefGoogle Scholar
  53. 53.
    C. Liu, D. Hou, J. Yan, L. Zhou, X. Kuang, H. Liang, Y. Huang, B. Zhang, Y. Tao, J. Phys. Chem. C 118, 3220–3229 (2014)CrossRefGoogle Scholar
  54. 54.
    M. Jiao, N. Guo, W. Lu, Y. Jia, W. Lv, Q. Zhao, B. Shao, H. You, Inorg. Chem. 52, 10340–10346 (2013)CrossRefGoogle Scholar
  55. 55.
    J.G. Bünzli, Chem. Rev. 110, 2729–2755 (2010)CrossRefGoogle Scholar
  56. 56.
    A.I. Becerro, S. Rodríguez-Liviano, A.J. Fernández-Carrión, M. Ocaña, Cryst. Growth Des. 13, 526–535 (2013)CrossRefGoogle Scholar
  57. 57.
    M. Shang, G. Li, X. Kang, D. Yang, D. Geng, J. Lin, A.C.S. Appl, Mater. Interfaces 3, 2738–2746 (2011)CrossRefGoogle Scholar
  58. 58.
    L. Hou, S. Cui, Z. Fu, Z. Wu, X. Fu, J.H. Jeong, Dalton Trans. 43, 5382–5392 (2014)CrossRefGoogle Scholar
  59. 59.
    S. Xu, P. Li, Z. Wang, T. Li, Q. Bai, J. Sun, Z. Yang, J. Mater. Chem. C 3, 9112–9121 (2015)CrossRefGoogle Scholar
  60. 60.
    D. Geng, G. Li, M. Shang, C. Peng, Y. Zhang, Z. Cheng, J. Lin, Dalton Trans. 41, 3078–3086 (2012)CrossRefGoogle Scholar
  61. 61.
    Y.Z. Shao, L.Z. Liu, S.Q. Song, R.H. Cao, H. Liu, C.Y. Cui, X. Li, M.J. Bie, L. Li, Contrast Media Mol. Imaging 6, 110–118 (2011)CrossRefGoogle Scholar
  62. 62.
    Y. Shao, X. Tian, W. Hu, Y. Zhang, H. Liu, H. He, Y. Shen, F. Xie, L. Li, Biomaterials 33, 6438–6446 (2012)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Physics, State Key Laboratory of Optoelectronic Materials and TechnologiesSun Yat-sen UniversityGuangzhouPeople’s Republic of China
  2. 2.Department of Optoelectronic Engineering, Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, College of Science and EngineeringJinan UniversityGuangzhouPeople’s Republic of China
  3. 3.State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer MedicineCenter of Medical Imaging and Image-guided Therapy, Sun Yat-sen University Cancer CenterGuangzhouPeople’s Republic of China

Personalised recommendations