Transparent nanoporous P-type NiO films grown directly on non-native substrates by anodization

  • Ryan KisslingerEmail author
  • Saralyn Riddell
  • Spencer Savela
  • Piyush Kar
  • Ujwal K. Thakur
  • Sheng Zeng
  • Karthik ShankarEmail author


While electrochemical anodization has been used to form a number of nanostructured n-type semiconducting metal oxides for optoelectronic device applications, there exists a dearth of p-type metal oxide films that are solution processable. Herein, we formed p-type semiconducting NiO films by vacuum depositing Ni thin films on non-native substrates (transparent conductive oxide (TCO)-coated glass substrates and silicon wafers) using magnetron sputtering, and subsequently anodizing and annealing the Ni films. The Ni films were subjected to electrochemical anodization in diethylene glycol based organic electrolytes and subsequently annealed at 600 °C to form nanoporous NiO films with a pore size of ~ 20 nm. Runaway etching is a key issue in Ni anodization which was mitigated through the use of ice bath cooling and galvanostatic anodization. The choice of substrate is found to be critical to the resulting morphology owing to the differing surface roughness. Crystalline NiO is found to have formed from Ni(OH)2 and NiOOH during annealing, and an additional NiSi layer is noted for NiO films on Si wafers. The bandgap of the NiO was estimated to be 3.5 eV. Electrochemical impedance spectroscopy and Mott–Schottky analysis confirmed p-type semiconducting behaviour, and enabled measurement of an acceptor density (NA) of 2.85 × 1018 cm−3 and a flatband potential (VFB) of 0.687 V versus Ag/AgCl.



This work was supported by funding from CMC Microsystems, Natural Sciences and Engineering Research Council of Canada (NSERC), and Future Energy Systems. R.K. would like to thank NSERC for scholarship support. R.K. and U.K.T. would like to thank Alberta Innovates for scholarship support.

Compliance with ethical standards

Conflicts of interest

The authors have no conflicts of interest to declare.

Supplementary material

10854_2019_1480_MOESM1_ESM.pdf (792 kb)
Supplementary material 1 (PDF 791 kb)


  1. 1.
    S. Rühle, A.Y. Anderson, H.-N. Barad, B. Kupfer, Y. Bouhadana, E. Rosh-Hodesh, A. Zaban, J. Phys. Chem. Lett. 3, 3755 (2012). CrossRefGoogle Scholar
  2. 2.
    Z. Wang, P.K. Nayak, J.A. Caraveo-Frescas, H.N. Alshareef, Adv. Mater. 28, 3831 (2016). CrossRefGoogle Scholar
  3. 3.
    P.M. Rao, L. Cai, C. Liu, I.S. Cho, C.H. Lee, J.M. Weisse, P. Yang, X. Zheng, Nano Lett. 14, 1099 (2014)CrossRefGoogle Scholar
  4. 4.
    P. Kar, K. Shankar, J. Nanosci. Nanotechnol. 13, 4473 (2013). CrossRefGoogle Scholar
  5. 5.
    M.H. Zarifi, S. Farsinezhad, M. Abdolrazzaghi, M. Daneshmand, K. Shankar, Nanoscale (2016). Google Scholar
  6. 6.
    D. Sarkar, S. Ishchuk, D.H. Taffa, N. Kaynan, B.A. Berke, T. Bendikov, R. Yerushalmi, J. Phys. Chem. C 120, 3853 (2016). CrossRefGoogle Scholar
  7. 7.
    Y. Wang, L. Zhu, T. Wang, Y. Hu, Z. Deng, Q. Cui, Z. Lou, Y. Hou, F. Teng, Org. Electron. 59, 63 (2018). CrossRefGoogle Scholar
  8. 8.
    G. Katwal, M. Paulose, I.A. Rusakova, J.E. Martinez, O.K. Varghese, Nano Lett. 16, 3014 (2016). CrossRefGoogle Scholar
  9. 9.
    M.I.A. Umar, F.Y. Naumar, M.M. Salleh, A.A. Umar, J. Mater. Sci.: Mater. Electron. 29, 6892 (2018). Google Scholar
  10. 10.
    P. Kar, Y. Zhang, S. Farsinezhad, A. Mohammadpour, B.D. Wiltshire, H. Sharma, K. Shankar, Chem. Commun. 51, 7816 (2015). CrossRefGoogle Scholar
  11. 11.
    U.K. Thakur, A.M. Askar, R. Kisslinger, B.D. Wiltshire, P. Kar, K. Shankar, Nanotechnology 28, 274001 (2017)CrossRefGoogle Scholar
  12. 12.
    D.-D. Qin, C.-L. Tao, S.-I. In, Z.-Y. Yang, T.-E. Mallouk, N. Bao, C.A. Grimes, Energy Fuels 25, 5257 (2011). CrossRefGoogle Scholar
  13. 13.
    T.J. LaTempa, X. Feng, M. Paulose, C.A. Grimes, J. Phys. Chem. C 113, 16293 (2009). CrossRefGoogle Scholar
  14. 14.
    N.K. Allam, X.J. Feng, C.A. Grimes, Chem. Mater. 20, 6477 (2008). CrossRefGoogle Scholar
  15. 15.
    M.M. Momeni, M. Mirhosseini, M. Chavoshi, Ceram. Int. 42, 9133 (2016)CrossRefGoogle Scholar
  16. 16.
    Y. Alivov, V. Singh, Y. Ding, P. Nagpal, Nanotechnology 25, 385202 (2014)CrossRefGoogle Scholar
  17. 17.
    J.-S. Baik, G. Yun, M. Balamurugan, S.K. Lee, J.-H. Kim, K.-S. Ahn, S.H. Kang, J. Electrochem. Soc. 163, H1165 (2016). CrossRefGoogle Scholar
  18. 18.
    J. He, Y. Hu, Z. Wang, W. Lu, S. Yang, G. Wu, Y. Wang, S. Wang, H. Gu, J. Wang, J. Mater. Chem. C 2, 8185 (2014). CrossRefGoogle Scholar
  19. 19.
    C.W. Lai, S.B. Abd Hamid, S. Sreekantan, Int. J. Photoenergy 2013, 6 (2013). Google Scholar
  20. 20.
    J.-H. Ha, P. Muralidharan, D.K. Kim, J. Alloys Compd. 475, 446 (2009). CrossRefGoogle Scholar
  21. 21.
    C.E. Castillo, M. Gennari, T. Stoll, J. Fortage, A. Deronzier, M.N. Collomb, M. Sandroni, F. Légalité, E. Blart, Y. Pellegrin, C. Delacote, M. Boujtita, F. Odobel, P. Rannou, S. Sadki, J. Phys. Chem. C 119, 5806 (2015). CrossRefGoogle Scholar
  22. 22.
    Z. Zhu, Y. Bai, T. Zhang, Z. Liu, X. Long, Z. Wei, Z. Wang, L. Zhang, J. Wang, F. Yan, S. Yang, Angew. Chem. 126, 12779 (2014). CrossRefGoogle Scholar
  23. 23.
    S.R. Nalage, M.A. Chougule, S. Sen, P.B. Joshi, V.B. Patil, Thin Solid Films 520, 4835 (2012). CrossRefGoogle Scholar
  24. 24.
    B.R. Cruz-Ortiz, M.A. Garcia-Lobato, E.R. Larios-Durán, E.M. Múzquiz-Ramos, J.C. Ballesteros-Pacheco, J. Electroanal. Chem. 772, 38 (2016). CrossRefGoogle Scholar
  25. 25.
    A. Sápi, A. Varga, G.F. Samu, D. Dobó, K.L. Juhász, B. Takács, E. Varga, Á. Kukovecz, Z. Kónya, C. Janáky, J. Phys. Chem. C 121, 12148 (2017). CrossRefGoogle Scholar
  26. 26.
    C. Hu, K. Chu, Y. Zhao, W.Y. Teoh, ACS Appl. Mater. Inter. 6, 18558 (2014). CrossRefGoogle Scholar
  27. 27.
    J. Bandara, K. Shankar, J. Basham, H. Wietasch, M. Paulose, O.K. Varghese, C.A. Grimes, M. Thelakkat, Eur. Phys. J. Appl. Phys. 53, 20601 (2011). CrossRefGoogle Scholar
  28. 28.
    V. Galstyan, A. Vomiero, E. Comini, G. Faglia, G. Sberveglieri, RSC Adv. 1, 1038 (2011). CrossRefGoogle Scholar
  29. 29.
    V. Galstyan, A. Vomiero, I. Concina, A. Braga, M. Brisotto, E. Bontempi, G. Faglia, G. Sberveglieri, Small 7, 2437 (2011). CrossRefGoogle Scholar
  30. 30.
    S.L. Lim, Y.L. Liu, J. Li, E.T. Kang, C.K. Ong, Appl. Surf. Sci. 257, 6612 (2011). CrossRefGoogle Scholar
  31. 31.
    J. Weickert, C. Palumbiny, M. Nedelcu, T. Bein, L. Schmidt-Mende, Chem. Mater. 23, 155 (2011). CrossRefGoogle Scholar
  32. 32.
    T. Yuxin, T. Jie, D. Zhili, O. Joo Tien, C. Zhong, Adv. Nat. Sci.: Nanosci. Nanotechnol. 2, 045002 (2011)Google Scholar
  33. 33.
    K.N. Chappanda, Y.R. Smith, M. Misra, S.K. Mohanty, Nanotechnology (2012). Google Scholar
  34. 34.
    K.N. Chappanda, Y.R. Smith, S.K. Mohanty, L.W. Rieth, P. Tathireddy, M. Misra, Nanoscale Res. Lett. (2012). Google Scholar
  35. 35.
    M Okada, K Tajima, Y Yamada, K Yoshimura (2012) In Pan F, Chen X (eds)18th International Vacuum CongressGoogle Scholar
  36. 36.
    J. Tupala, M. Kemell, E. Harkonen, M. Ritala, M. Leskela, Nanotechnology (2012). Google Scholar
  37. 37.
    H. Wang, H.Y. Li, J.S. Wang, J.S. Wu, Mater. Lett. 80, 99 (2012). CrossRefGoogle Scholar
  38. 38.
    S. Farsinezhad, A. Mohammadpour, A.N. Dalrymple, J. Geisinger, P. Kar, M.J. Brett, K. Shankar, J. Nanosci. Nanotechnol. 13, 2885 (2013). CrossRefGoogle Scholar
  39. 39.
    S. Farsinezhad, A.N. Dalrymple, K. Shankar, Phys. Status Solidi A 211, 1113 (2014). CrossRefGoogle Scholar
  40. 40.
    K.N. Chappanda, Y.R. Smith, L.W. Rieth, P. Tathireddy, M. Misra, S.K. Mohanty, IEEE T. Nanotechnol. 14, 18 (2015). CrossRefGoogle Scholar
  41. 41.
    S. Farsinezhad, A. Mohammadpour, M. Benlamri, A.N. Dalrymple, K. Shankar, J. Nanosci. Nanotechnol. 17, 4936 (2017). CrossRefGoogle Scholar
  42. 42.
    J.A. Thornton, J. Vac. Sci. Technol. 11, 666 (1974). CrossRefGoogle Scholar
  43. 43.
    T.H. Choudhury, S. Raghavan, Scr. Mater. 105, 18 (2015). CrossRefGoogle Scholar
  44. 44.
    M. Paulose, K. Shankar, S. Yoriya, H.E. Prakasam, O.K. Varghese, G.K. Mor, T.A. Latempa, A. Fitzgerald, C.A. Grimes, J. Phys. Chem. B 110, 16179 (2006). CrossRefGoogle Scholar
  45. 45.
    S. Yoriya, C.A. Grimes, Langmuir 26, 417 (2010). CrossRefGoogle Scholar
  46. 46.
    S.P. Albu, P. Schmuki, Physica Status Solidi RRL 4, 215 (2010). CrossRefGoogle Scholar
  47. 47.
    A. Mohammadpour, P.R. Waghmare, S.K. Mitra, K. Shankar, ACS Nano 4, 7421 (2010). CrossRefGoogle Scholar
  48. 48.
    D. Kowalski, J. Mallet, J. Michel, M. Molinari, J. Mater. Chem. A 3, 6655 (2015). CrossRefGoogle Scholar
  49. 49.
    X. Zhong, D. Yu, Y. Song, D. Li, H. Xiao, C. Yang, L. Lu, W. Ma, X. Zhu, Mater. Res. Bull. 60, 348 (2014). CrossRefGoogle Scholar
  50. 50.
    A. Mohammadpour, K. Shankar, J. Mater. Chem. 20, 8474 (2010). CrossRefGoogle Scholar
  51. 51.
    Y.-N. Kim, H.-G. Shin, J.-K. Song, D.-H. Cho, H.-S. Lee, Y.-G. Jung, J. Mater. Res. 20, 1574 (2005). CrossRefGoogle Scholar
  52. 52.
    M.D. Irwin, D.B. Buchholz, A.W. Hains, R.P.H. Chang, T.J. Marks, Proc. Natl. Acad. Sci. USA 105, 2783 (2008)CrossRefGoogle Scholar
  53. 53.
    F.A. Geenen, E. Solano, J. Jordan-Sweet, C. Lavoie, C. Mocuta, C. Detavernier, J. Appl. Phys. 123, 185302 (2018). CrossRefGoogle Scholar
  54. 54.
    S.A. Yousif, J.M. Abass, Int. Lett. Chem. Phys. Astron. 18, 90 (2013). CrossRefGoogle Scholar
  55. 55.
    L. Ai, G. Fang, L. Yuan, N. Liu, M. Wang, C. Li, Q. Zhang, J. Li, X. Zhao, Appl. Surf. Sci. 254, 2401 (2008). CrossRefGoogle Scholar
  56. 56.
  57. 57.
    N. Park, K. Sun, Z. Sun, Y. Jing, D. Wang, J. Mater. Chem. C 1, 7333 (2013). CrossRefGoogle Scholar
  58. 58.
    C. Lavoie, F.M. d’Heurle, C. Detavernier, C. Cabral, Microelectron. Eng. 70, 144 (2003). CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Electrical and Computer EngineeringUniversity of AlbertaEdmontonCanada

Personalised recommendations