Advertisement

Transparent nanoporous P-type NiO films grown directly on non-native substrates by anodization

  • Ryan KisslingerEmail author
  • Saralyn Riddell
  • Spencer Savela
  • Piyush Kar
  • Ujwal K. Thakur
  • Sheng Zeng
  • Karthik ShankarEmail author
Article
  • 65 Downloads

Abstract

While electrochemical anodization has been used to form a number of nanostructured n-type semiconducting metal oxides for optoelectronic device applications, there exists a dearth of p-type metal oxide films that are solution processable. Herein, we formed p-type semiconducting NiO films by vacuum depositing Ni thin films on non-native substrates (transparent conductive oxide (TCO)-coated glass substrates and silicon wafers) using magnetron sputtering, and subsequently anodizing and annealing the Ni films. The Ni films were subjected to electrochemical anodization in diethylene glycol based organic electrolytes and subsequently annealed at 600 °C to form nanoporous NiO films with a pore size of ~ 20 nm. Runaway etching is a key issue in Ni anodization which was mitigated through the use of ice bath cooling and galvanostatic anodization. The choice of substrate is found to be critical to the resulting morphology owing to the differing surface roughness. Crystalline NiO is found to have formed from Ni(OH)2 and NiOOH during annealing, and an additional NiSi layer is noted for NiO films on Si wafers. The bandgap of the NiO was estimated to be 3.5 eV. Electrochemical impedance spectroscopy and Mott–Schottky analysis confirmed p-type semiconducting behaviour, and enabled measurement of an acceptor density (NA) of 2.85 × 1018 cm−3 and a flatband potential (VFB) of 0.687 V versus Ag/AgCl.

Notes

Acknowledgements

This work was supported by funding from CMC Microsystems, Natural Sciences and Engineering Research Council of Canada (NSERC), and Future Energy Systems. R.K. would like to thank NSERC for scholarship support. R.K. and U.K.T. would like to thank Alberta Innovates for scholarship support.

Compliance with ethical standards

Conflicts of interest

The authors have no conflicts of interest to declare.

Supplementary material

10854_2019_1480_MOESM1_ESM.pdf (792 kb)
Supplementary material 1 (PDF 791 kb)

References

  1. 1.
    S. Rühle, A.Y. Anderson, H.-N. Barad, B. Kupfer, Y. Bouhadana, E. Rosh-Hodesh, A. Zaban, J. Phys. Chem. Lett. 3, 3755 (2012).  https://doi.org/10.1021/jz3017039 CrossRefGoogle Scholar
  2. 2.
    Z. Wang, P.K. Nayak, J.A. Caraveo-Frescas, H.N. Alshareef, Adv. Mater. 28, 3831 (2016).  https://doi.org/10.1002/adma.201503080 CrossRefGoogle Scholar
  3. 3.
    P.M. Rao, L. Cai, C. Liu, I.S. Cho, C.H. Lee, J.M. Weisse, P. Yang, X. Zheng, Nano Lett. 14, 1099 (2014)CrossRefGoogle Scholar
  4. 4.
    P. Kar, K. Shankar, J. Nanosci. Nanotechnol. 13, 4473 (2013).  https://doi.org/10.1166/jnn.2013.7771 CrossRefGoogle Scholar
  5. 5.
    M.H. Zarifi, S. Farsinezhad, M. Abdolrazzaghi, M. Daneshmand, K. Shankar, Nanoscale (2016).  https://doi.org/10.1039/c5nr06567d Google Scholar
  6. 6.
    D. Sarkar, S. Ishchuk, D.H. Taffa, N. Kaynan, B.A. Berke, T. Bendikov, R. Yerushalmi, J. Phys. Chem. C 120, 3853 (2016).  https://doi.org/10.1021/acs.jpcc.5b11795 CrossRefGoogle Scholar
  7. 7.
    Y. Wang, L. Zhu, T. Wang, Y. Hu, Z. Deng, Q. Cui, Z. Lou, Y. Hou, F. Teng, Org. Electron. 59, 63 (2018).  https://doi.org/10.1016/j.orgel.2018.04.033 CrossRefGoogle Scholar
  8. 8.
    G. Katwal, M. Paulose, I.A. Rusakova, J.E. Martinez, O.K. Varghese, Nano Lett. 16, 3014 (2016).  https://doi.org/10.1021/acs.nanolett.5b05280 CrossRefGoogle Scholar
  9. 9.
    M.I.A. Umar, F.Y. Naumar, M.M. Salleh, A.A. Umar, J. Mater. Sci.: Mater. Electron. 29, 6892 (2018).  https://doi.org/10.1007/s10854-018-8675-2 Google Scholar
  10. 10.
    P. Kar, Y. Zhang, S. Farsinezhad, A. Mohammadpour, B.D. Wiltshire, H. Sharma, K. Shankar, Chem. Commun. 51, 7816 (2015).  https://doi.org/10.1039/C5CC01829C CrossRefGoogle Scholar
  11. 11.
    U.K. Thakur, A.M. Askar, R. Kisslinger, B.D. Wiltshire, P. Kar, K. Shankar, Nanotechnology 28, 274001 (2017)CrossRefGoogle Scholar
  12. 12.
    D.-D. Qin, C.-L. Tao, S.-I. In, Z.-Y. Yang, T.-E. Mallouk, N. Bao, C.A. Grimes, Energy Fuels 25, 5257 (2011).  https://doi.org/10.1021/ef201367q CrossRefGoogle Scholar
  13. 13.
    T.J. LaTempa, X. Feng, M. Paulose, C.A. Grimes, J. Phys. Chem. C 113, 16293 (2009).  https://doi.org/10.1021/jp904560n CrossRefGoogle Scholar
  14. 14.
    N.K. Allam, X.J. Feng, C.A. Grimes, Chem. Mater. 20, 6477 (2008).  https://doi.org/10.1021/cm801472y CrossRefGoogle Scholar
  15. 15.
    M.M. Momeni, M. Mirhosseini, M. Chavoshi, Ceram. Int. 42, 9133 (2016)CrossRefGoogle Scholar
  16. 16.
    Y. Alivov, V. Singh, Y. Ding, P. Nagpal, Nanotechnology 25, 385202 (2014)CrossRefGoogle Scholar
  17. 17.
    J.-S. Baik, G. Yun, M. Balamurugan, S.K. Lee, J.-H. Kim, K.-S. Ahn, S.H. Kang, J. Electrochem. Soc. 163, H1165 (2016).  https://doi.org/10.1149/2.1091614jes CrossRefGoogle Scholar
  18. 18.
    J. He, Y. Hu, Z. Wang, W. Lu, S. Yang, G. Wu, Y. Wang, S. Wang, H. Gu, J. Wang, J. Mater. Chem. C 2, 8185 (2014).  https://doi.org/10.1039/C4TC01581A CrossRefGoogle Scholar
  19. 19.
    C.W. Lai, S.B. Abd Hamid, S. Sreekantan, Int. J. Photoenergy 2013, 6 (2013).  https://doi.org/10.1155/2013/745301 Google Scholar
  20. 20.
    J.-H. Ha, P. Muralidharan, D.K. Kim, J. Alloys Compd. 475, 446 (2009).  https://doi.org/10.1016/j.jallcom.2008.07.048 CrossRefGoogle Scholar
  21. 21.
    C.E. Castillo, M. Gennari, T. Stoll, J. Fortage, A. Deronzier, M.N. Collomb, M. Sandroni, F. Légalité, E. Blart, Y. Pellegrin, C. Delacote, M. Boujtita, F. Odobel, P. Rannou, S. Sadki, J. Phys. Chem. C 119, 5806 (2015).  https://doi.org/10.1021/jp511469f CrossRefGoogle Scholar
  22. 22.
    Z. Zhu, Y. Bai, T. Zhang, Z. Liu, X. Long, Z. Wei, Z. Wang, L. Zhang, J. Wang, F. Yan, S. Yang, Angew. Chem. 126, 12779 (2014).  https://doi.org/10.1002/ange.201405176 CrossRefGoogle Scholar
  23. 23.
    S.R. Nalage, M.A. Chougule, S. Sen, P.B. Joshi, V.B. Patil, Thin Solid Films 520, 4835 (2012).  https://doi.org/10.1016/j.tsf.2012.02.072 CrossRefGoogle Scholar
  24. 24.
    B.R. Cruz-Ortiz, M.A. Garcia-Lobato, E.R. Larios-Durán, E.M. Múzquiz-Ramos, J.C. Ballesteros-Pacheco, J. Electroanal. Chem. 772, 38 (2016).  https://doi.org/10.1016/j.jelechem.2016.04.020 CrossRefGoogle Scholar
  25. 25.
    A. Sápi, A. Varga, G.F. Samu, D. Dobó, K.L. Juhász, B. Takács, E. Varga, Á. Kukovecz, Z. Kónya, C. Janáky, J. Phys. Chem. C 121, 12148 (2017).  https://doi.org/10.1021/acs.jpcc.7b00429 CrossRefGoogle Scholar
  26. 26.
    C. Hu, K. Chu, Y. Zhao, W.Y. Teoh, ACS Appl. Mater. Inter. 6, 18558 (2014).  https://doi.org/10.1021/am507138b CrossRefGoogle Scholar
  27. 27.
    J. Bandara, K. Shankar, J. Basham, H. Wietasch, M. Paulose, O.K. Varghese, C.A. Grimes, M. Thelakkat, Eur. Phys. J. Appl. Phys. 53, 20601 (2011).  https://doi.org/10.1051/epjap/2010100387 CrossRefGoogle Scholar
  28. 28.
    V. Galstyan, A. Vomiero, E. Comini, G. Faglia, G. Sberveglieri, RSC Adv. 1, 1038 (2011).  https://doi.org/10.1039/c1ra00077b CrossRefGoogle Scholar
  29. 29.
    V. Galstyan, A. Vomiero, I. Concina, A. Braga, M. Brisotto, E. Bontempi, G. Faglia, G. Sberveglieri, Small 7, 2437 (2011).  https://doi.org/10.1002/smll.201101356 CrossRefGoogle Scholar
  30. 30.
    S.L. Lim, Y.L. Liu, J. Li, E.T. Kang, C.K. Ong, Appl. Surf. Sci. 257, 6612 (2011).  https://doi.org/10.1016/j.apsusc.2011.02.087 CrossRefGoogle Scholar
  31. 31.
    J. Weickert, C. Palumbiny, M. Nedelcu, T. Bein, L. Schmidt-Mende, Chem. Mater. 23, 155 (2011).  https://doi.org/10.1021/cm102389m CrossRefGoogle Scholar
  32. 32.
    T. Yuxin, T. Jie, D. Zhili, O. Joo Tien, C. Zhong, Adv. Nat. Sci.: Nanosci. Nanotechnol. 2, 045002 (2011)Google Scholar
  33. 33.
    K.N. Chappanda, Y.R. Smith, M. Misra, S.K. Mohanty, Nanotechnology (2012).  https://doi.org/10.1088/0957-4484/23/38/385601 Google Scholar
  34. 34.
    K.N. Chappanda, Y.R. Smith, S.K. Mohanty, L.W. Rieth, P. Tathireddy, M. Misra, Nanoscale Res. Lett. (2012).  https://doi.org/10.1186/1556-276x-7-388 Google Scholar
  35. 35.
    M Okada, K Tajima, Y Yamada, K Yoshimura (2012) In Pan F, Chen X (eds)18th International Vacuum CongressGoogle Scholar
  36. 36.
    J. Tupala, M. Kemell, E. Harkonen, M. Ritala, M. Leskela, Nanotechnology (2012).  https://doi.org/10.1088/0957-4484/23/12/125707 Google Scholar
  37. 37.
    H. Wang, H.Y. Li, J.S. Wang, J.S. Wu, Mater. Lett. 80, 99 (2012).  https://doi.org/10.1016/j.matlet.2012.04.053 CrossRefGoogle Scholar
  38. 38.
    S. Farsinezhad, A. Mohammadpour, A.N. Dalrymple, J. Geisinger, P. Kar, M.J. Brett, K. Shankar, J. Nanosci. Nanotechnol. 13, 2885 (2013).  https://doi.org/10.1166/jnn.2013.7409 CrossRefGoogle Scholar
  39. 39.
    S. Farsinezhad, A.N. Dalrymple, K. Shankar, Phys. Status Solidi A 211, 1113 (2014).  https://doi.org/10.1002/pssa.201330649 CrossRefGoogle Scholar
  40. 40.
    K.N. Chappanda, Y.R. Smith, L.W. Rieth, P. Tathireddy, M. Misra, S.K. Mohanty, IEEE T. Nanotechnol. 14, 18 (2015).  https://doi.org/10.1109/TNANO.2014.2360501 CrossRefGoogle Scholar
  41. 41.
    S. Farsinezhad, A. Mohammadpour, M. Benlamri, A.N. Dalrymple, K. Shankar, J. Nanosci. Nanotechnol. 17, 4936 (2017).  https://doi.org/10.1166/jnn.2017.13310 CrossRefGoogle Scholar
  42. 42.
    J.A. Thornton, J. Vac. Sci. Technol. 11, 666 (1974).  https://doi.org/10.1116/1.1312732 CrossRefGoogle Scholar
  43. 43.
    T.H. Choudhury, S. Raghavan, Scr. Mater. 105, 18 (2015).  https://doi.org/10.1016/j.scriptamat.2015.04.017 CrossRefGoogle Scholar
  44. 44.
    M. Paulose, K. Shankar, S. Yoriya, H.E. Prakasam, O.K. Varghese, G.K. Mor, T.A. Latempa, A. Fitzgerald, C.A. Grimes, J. Phys. Chem. B 110, 16179 (2006).  https://doi.org/10.1021/jp064020k CrossRefGoogle Scholar
  45. 45.
    S. Yoriya, C.A. Grimes, Langmuir 26, 417 (2010).  https://doi.org/10.1021/la9020146 CrossRefGoogle Scholar
  46. 46.
    S.P. Albu, P. Schmuki, Physica Status Solidi RRL 4, 215 (2010).  https://doi.org/10.1002/pssr.201004244 CrossRefGoogle Scholar
  47. 47.
    A. Mohammadpour, P.R. Waghmare, S.K. Mitra, K. Shankar, ACS Nano 4, 7421 (2010).  https://doi.org/10.1021/nn1026214 CrossRefGoogle Scholar
  48. 48.
    D. Kowalski, J. Mallet, J. Michel, M. Molinari, J. Mater. Chem. A 3, 6655 (2015).  https://doi.org/10.1039/C4TA06714B CrossRefGoogle Scholar
  49. 49.
    X. Zhong, D. Yu, Y. Song, D. Li, H. Xiao, C. Yang, L. Lu, W. Ma, X. Zhu, Mater. Res. Bull. 60, 348 (2014).  https://doi.org/10.1016/j.materresbull.2014.09.011 CrossRefGoogle Scholar
  50. 50.
    A. Mohammadpour, K. Shankar, J. Mater. Chem. 20, 8474 (2010).  https://doi.org/10.1039/C0JM02198A CrossRefGoogle Scholar
  51. 51.
    Y.-N. Kim, H.-G. Shin, J.-K. Song, D.-H. Cho, H.-S. Lee, Y.-G. Jung, J. Mater. Res. 20, 1574 (2005).  https://doi.org/10.1557/JMR.2005.0199 CrossRefGoogle Scholar
  52. 52.
    M.D. Irwin, D.B. Buchholz, A.W. Hains, R.P.H. Chang, T.J. Marks, Proc. Natl. Acad. Sci. USA 105, 2783 (2008)CrossRefGoogle Scholar
  53. 53.
    F.A. Geenen, E. Solano, J. Jordan-Sweet, C. Lavoie, C. Mocuta, C. Detavernier, J. Appl. Phys. 123, 185302 (2018).  https://doi.org/10.1063/1.5022070 CrossRefGoogle Scholar
  54. 54.
    S.A. Yousif, J.M. Abass, Int. Lett. Chem. Phys. Astron. 18, 90 (2013).  https://doi.org/10.18052/www.scipress.com/ILCPA.18.90 CrossRefGoogle Scholar
  55. 55.
    L. Ai, G. Fang, L. Yuan, N. Liu, M. Wang, C. Li, Q. Zhang, J. Li, X. Zhao, Appl. Surf. Sci. 254, 2401 (2008).  https://doi.org/10.1016/j.apsusc.2007.09.051 CrossRefGoogle Scholar
  56. 56.
  57. 57.
    N. Park, K. Sun, Z. Sun, Y. Jing, D. Wang, J. Mater. Chem. C 1, 7333 (2013).  https://doi.org/10.1039/C3TC31444H CrossRefGoogle Scholar
  58. 58.
    C. Lavoie, F.M. d’Heurle, C. Detavernier, C. Cabral, Microelectron. Eng. 70, 144 (2003).  https://doi.org/10.1016/S0167-9317(03)00380-0 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Electrical and Computer EngineeringUniversity of AlbertaEdmontonCanada

Personalised recommendations