Advertisement

CZTSSe thin films fabricated by single step deposition for superstrate solar cell applications

  • M. Terlemezoglu
  • Ö. Bayraklı Sürücü
  • C. Dogru
  • H. H. Güllü
  • E. H. Ciftpinar
  • Ç. Erçelebi
  • M. ParlakEmail author
Article
  • 76 Downloads

Abstract

The focus of this study is the characterization of Cu2ZnSn(S,Se)4 (CZTSSe) thin films and fabrication of CZTSSe solar cell in superstrate configuration. In this work, superstrate-type configuration of glass/ITO/CdS/CZTSSe/Au was entirely fabricated by totally vacuum-based process. CZTSSe absorber layers were grown by RF magnetron sputtering technique using stacked layer procedure. SnS, CuSe and ZnSe solid targets were used as precursors and no additional step like the selenization process was applied. The structural and morphological properties of deposited CZTSSe layers were analyzed using X-ray diffraction (XRD), Raman scattering, scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy analysis (EDS) measurements. The optical and electrical properties of the CZTSSe thin films were investigated by UV–Vis spectroscopy, Hall-Effect and photoconductivity measurements. In addition, the device performance of the fabricated superstrate solar cell was examined.

Notes

Acknowledgement

This work was financed by Middle East Technical University BAP under Grant No. GAP-105-2018-2755.

References

  1. 1.
    M. Berruet, Y. Di Iorio, C.J. Pereyra, R.E. Marotti, M. Vázquez, Phys. Status Solidi. 11(8), 1700144 (2017)Google Scholar
  2. 2.
    C. Yan, K. Sun, F. Liu, J. Huang, F. Zhou, X. Hao, Sol. Energy Mater. Sol. Cells 160, 7 (2017)CrossRefGoogle Scholar
  3. 3.
    J. He, L. Sun, S. Chen, Y. Chen, P. Yang, J. Chu, J. Alloys Compd. 511, 129 (2012)CrossRefGoogle Scholar
  4. 4.
    M. Grossberg, J. Krustok, J. Raudoja, K. Timmo, M. Altosaar, T. Raadik, Thin Solid Films 519, 7403 (2011)CrossRefGoogle Scholar
  5. 5.
    Y. Zhang, Y. Sun, H. Wang, H. Yan, Phys. Status Solidi 213, 1324 (2016)CrossRefGoogle Scholar
  6. 6.
    J. He, L. Sun, N. Ding, H. Kong, S. Zuo, S. Chen, Y. Chen, P. Yang, J. Chu, J. Alloys Compd. 529, 34 (2012)CrossRefGoogle Scholar
  7. 7.
    D.H. Son, D.H. Kim, S.N. Park, K.J. Yang, D. Nam, H. Cheong, J.K. Kang, Chem. Mater. 27, 5180 (2015)CrossRefGoogle Scholar
  8. 8.
    N. Ryota, T. Kunihiko, U. Hisao, J. Kazuo, W. Tsukasa, K. Hironori, Jpn. J. Appl. Phys. 53(2S), 02BC10 (2014)CrossRefGoogle Scholar
  9. 9.
    K. Oishi, G. Saito, K. Ebina, M. Nagahashi, K. Jimbo, W.S. Maw, H. Katagiri, M. Yamazaki, H. Araki, A. Takeuchi, Thin Solid Films 517, 1449 (2008)CrossRefGoogle Scholar
  10. 10.
    B. Shin, O. Gunawan, Y. Zhu, N.A. Bojarczuk, S.J. Chey, S. Guha, Prog. Photovoltaics Res. Appl. 21, 72 (2013)CrossRefGoogle Scholar
  11. 11.
    Ö. Bayraklı, M. Terlemezoglu, H.H. Güllü, M. Parlak, Mater. Res. Express 4, 086411 (2017)CrossRefGoogle Scholar
  12. 12.
    J. Li, T. Ma, M. Wei, W. Liu, G. Jiang, C. Zhu, Appl. Surf. Sci. 258, 6261 (2012)CrossRefGoogle Scholar
  13. 13.
    F. Yakuphanoglu, Sol. Energy 85, 2518 (2011)CrossRefGoogle Scholar
  14. 14.
    N. Kamoun, H. Bouzouita, B. Rezig, Thin Solid Films 515, 5949 (2007)CrossRefGoogle Scholar
  15. 15.
    W. Wang, M.T. Winkler, O. Gunawan, T. Gokmen, T.K. Todorov, Y. Zhu, D.B. Mitzi, Adv. Energy Mater. 4, 1301465 (2014)CrossRefGoogle Scholar
  16. 16.
    C.-L. Wang, C.-C. Wang, B. Reeja-Jayan, A. Manthiram, RSC Adv. 3, 19946 (2013)CrossRefGoogle Scholar
  17. 17.
    O. Gunawan, T.K. Todorov, D.B. Mitzi, Appl. Phys. Lett. 97, 233506 (2010)CrossRefGoogle Scholar
  18. 18.
    D.B. Mitzi, O. Gunawan, T.K. Todorov, D.A.R. Barkhouse, Philos. Trans. A. Math. Phys. Eng. Sci. 371, 20110432 (2013)CrossRefGoogle Scholar
  19. 19.
    P. Xin, J.K. Larsen, F. Deng, W.N. Shafarman, Sol. Energy Mater. Sol. Cells 157, 85 (2016)CrossRefGoogle Scholar
  20. 20.
    M.D. Heinemann, F. Ruske, D. Greiner, A.R. Jeong, M. Rusu, B. Rech, R. Schlatmann, C.A. Kaufmann, Sol. Energy Mater. Sol. Cells 150, 76 (2016)CrossRefGoogle Scholar
  21. 21.
    D. Lee, K. Yong, Nanotechnology 25, 065401 (2014)CrossRefGoogle Scholar
  22. 22.
    M. Terlemezoglu, Ö. Bayraklı, H.H. Güllü, T. Çolakoğlu, D.E. Yildiz, M. Parlak, J. Mater. Sci. 29, 5264 (2018)Google Scholar
  23. 23.
    Z. Shi, D. Attygalle, A.H. Jayatissa, J. Mater. Sci.: Mater. Electron. 28, 2290 (2017)Google Scholar
  24. 24.
    N.M. Shinde, D.P. Dubal, D.S. Dhawale, C.D. Lokhande, J.H. Kim, J.H. Moon, Mater. Res. Bull. 47, 302 (2012)CrossRefGoogle Scholar
  25. 25.
    H.H. Güllü, M. Terlemezoğlu, Ö. Bayraklı, D.E. Yıldız, M. Parlak, Can. J. Phys. 96, 816 (2018)CrossRefGoogle Scholar
  26. 26.
    J.Y.W. Seto, J. Appl. Phys. 46, 5247 (1975)CrossRefGoogle Scholar
  27. 27.
    N.F. Mott, E.A. Davis, Electronic Processes in Non-Crystalline Materials (Clarendon Press, Oxford, 1979)Google Scholar
  28. 28.
    R.H. Bube, Photoelectronic Properties of Semiconductors (Cambridge University Press, Cambridge, 1992)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of PhysicsMiddle East Technical UniversityAnkaraTurkey
  2. 2.Center for Solar Energy Research and Applications, Middle East Technical UniversityAnkaraTurkey
  3. 3.Department of PhysicsTekirdağ Namık Kemal UniversityTekirdağTurkey
  4. 4.Department of PhysicsKırşehir Ahi Evran UniversityKırşehirTurkey
  5. 5.Department of Electrical and Electronics EngineeringAtilim UniversityAnkaraTurkey

Personalised recommendations