Porous carbons derived from carbonization of tissue papers for supercapacitors

  • Yi Luo
  • Chong Luo
  • Si-Wei Zhang
  • Jie Wei
  • Wei Lv
  • Quan-Hong YangEmail author


Carbonization of biomasses is an effective and important approach to recycle biomass waste. The tissue papers are one of the most common household trash and waste lots of natural resources and energies. Herein, the one-step carbonization and activation treatment was applied on two kinds of tissue papers to transform them into porous carbons. It was found the precursor structure and composition as well as the calcination temperatures play key roles to control the pore structures. As the active materials of supercapacitor electrodes, the resultant porous carbons obtained from different paper precursors and calcination temperatures (700–900 °C) presented different electrochemical performances. The microporous carbons derived from the 700 °C calcination of the tissue paper using the wood pulp as the raw material showed high capacitance up to ~ 200 F/g, providing a simple but effective way to recycle biomasses.



This work was supported by the National Natural Science Foundation of China (Grant Nos. 51772164 and U1601206).


  1. 1.
    P. McKendry, Bioresour. Technol. 83, 37–46 (2002)CrossRefGoogle Scholar
  2. 2.
    N. Bagheri, J. Abedi, Chem. Eng. Res. Des. 87, 1059–1064 (2009)CrossRefGoogle Scholar
  3. 3.
    A. Basta, V. Fierro, H. El-Saied, A. Celzard, Bioresour. Technol. 100, 3941–3947 (2009)CrossRefGoogle Scholar
  4. 4.
    C. Srinivasakannan, M.Z.A. Bakar, Biomass Bioenergy 27, 89–96 (2004)CrossRefGoogle Scholar
  5. 5.
    S. Yorgun, N. Vural, H. Demiral, Microporous Mesoporous Mater. 122, 189–194 (2009)CrossRefGoogle Scholar
  6. 6.
    K. Wang, N. Zhao, S. Lei et al., Electrochim. Acta 166, 1–11 (2015)CrossRefGoogle Scholar
  7. 7.
    A.B. Fadhil, A.I. Ahmed, H.A. Salih, Fuel 187, 435–445 (2017)CrossRefGoogle Scholar
  8. 8.
    T. Chen, S. Deng, B. Wang, J. Huang, Y. Wang, G. Yu, RSC Adv. 5, 48323–48330 (2015)CrossRefGoogle Scholar
  9. 9.
    D. Bhattacharjya, J. Yu, J. Power Sources 262, 224–231 (2014)CrossRefGoogle Scholar
  10. 10.
    C. Peng, X. Yan, R. Wang, J. Lang, Y. Ou, Q. Xue, Electrochim. Acta 87, 401–408 (2013)CrossRefGoogle Scholar
  11. 11.
    T.E. Rufford, D. Hulicova-Jurcakova, Z. Zhu, G.Q. Lu, Electrochem. Commun. 10, 1594–1597 (2008)CrossRefGoogle Scholar
  12. 12.
    C. Kim, Y.O. Choi, W.J. Lee, K.S. Yang, Electrochim. Acta 50, 883–887 (2004)CrossRefGoogle Scholar
  13. 13.
    W. Xing, C.C. Huang, S.P. Zhuo et al., Carbon 47, 1715–1722 (2009)CrossRefGoogle Scholar
  14. 14.
    Y. Ou, C. Peng, J. Lang, D. Zhu, X. Yan, New Carbon Mater. 29, 209–215 (2014)CrossRefGoogle Scholar
  15. 15.
    D.K. Shen, S. Gu, Bioresour. Technol. 100, 6496–6504 (2009)CrossRefGoogle Scholar
  16. 16.
    S. Zhang, C. Luo, C. You, J. Zhang, Z. Pan, F. Kang, Q. Yang, Energy Storage Mater. 3, 18–23 (2016)CrossRefGoogle Scholar
  17. 17.
    H. Liu, G. Zhang, Y. Zhou, M. Gao, F. Yang, J. Mater. Chem. A 1, 13902–13913 (2013)CrossRefGoogle Scholar
  18. 18.
    A.M. Puziy, O.I. Poddubnaya, A. Martínez-Alonso, F. Suárez-García, J.M. Tascón, Carbon 43, 2857–2868 (2005)CrossRefGoogle Scholar
  19. 19.
    C. Tien, Adsorption Calculations and Modeling (Butterworth-Heinemann, Boston, 1994)Google Scholar
  20. 20.
    K.S.W. Sing, Adv. Colloid Interface Sci. 76, 3–11 (1998)CrossRefGoogle Scholar
  21. 21.
    D.W. Wang, F. Li, M. Liu, G.Q. Lu, H.M. Cheng, Angew. Chem. Int. Ed. 47, 373–376 (2008)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Yi Luo
    • 1
  • Chong Luo
    • 1
  • Si-Wei Zhang
    • 1
  • Jie Wei
    • 1
  • Wei Lv
    • 1
  • Quan-Hong Yang
    • 1
    Email author
  1. 1.Engineering Laboratory for Functionalized Carbon Materials, Graduate School at ShenzhenTsinghua UniversityShenzhenChina

Personalised recommendations