Advertisement

PEDOT:PSS coated CuO nanowire arrays grown on Cu foam for high-performance supercapacitor electrodes

  • Asim Abas
  • Hongwei Sheng
  • Yonglu Ma
  • Xuetao Zhang
  • Yupeng Wei
  • Qing Su
  • Wei LanEmail author
  • Erqing Xie
Review
  • 89 Downloads

Abstract

Supercapacitors based on transition metals oxides (TMOs) have recently attracted immerse attentions in lightweight and durable energy-storage devices. Noted that poor conductivity is a major problem for the TMOs active materials, such as CuO. Herein, vertically-aligned CuO nanowire arrays@poly (3,4 ethylenedioxythiopene)/poly (styrene-4-sulfonate) (CuO NWAs@PEDOT:PSS) were synthesized in situ on Cu foam through a facile wet-chemical approach combined with immersion method. The PEDOT:PSS layer provides the electron transport paths to maximize the charge storage (the capacitance) and contributes to the additional pseudocapacitance, as well as alleviates the exfoliation and dissolution of CuO NWAs during the charge storage process. The prepared CuO NWAs@PEDOT:PSS composite electrodes exhibit a higher areal capacitance (907.5 mF/cm2 at 3 mA/cm2), which is about 2.5 times of the pure CuO NWAs electrode, together with a longer cycle life span. The enhanced electrochemical performances originate from the unique structure design of double conductive layer with the top conductive polymer and the bottom metal foam for CuO NWAs active material. This effective approach is of great significance for portable energy-storage devices based on TMO materials.

Notes

Acknowledgements

This work was supported by National Natural Science Foundation of China (61874166, U1832149), Natural Science Foundation of Gansu province (18JR3RA292), the Fundamental Research Funds for the Central Universities (lzujbky-2017-k21).

References

  1. 1.
    A.S. Arico, P. Bruce, B. Scrosati, J.M. Tarascon, W. Van Schalkwijk, Nanostructured materials for advanced energy conversion and storage devices. Nat. Mater. 4, 366–377 (2005)CrossRefGoogle Scholar
  2. 2.
    P. Simon, Y. Gogotsi, Materials for electrochemical capacitors. Nat. Mater. 7, 845–854 (2008)CrossRefGoogle Scholar
  3. 3.
    P.G. Bruce, B. Scrosati, J.-M. Tarascon, Nanomaterials for rechargeable lithium batteries. Angew. Chem.-Int. Edit. 47, 2930–2946 (2008)CrossRefGoogle Scholar
  4. 4.
    Z. Guo, J. Mu, H. Che, G. Wang, A. Liu, X. Zhang, Z. Zhang, Facile preparation of MnO2@C composite nanorods for high-performance supercapacitors. J. Mater. Sci. 27, 13314–13322 (2016)Google Scholar
  5. 5.
    L. Zhang, L. Liu, Y. Yu, H. Lv, S. Hou, A. Chen, Synthesis of rich fluffy porous carbon spheres by dissolution–reassembly method for supercapacitors. J. Mater. Sci. 30(4), 3316–3324 (2019)Google Scholar
  6. 6.
    G. Wang, L. Zhang, J. Zhang, A review of electrode materials for electrochemical supercapacitors. Chem. Soc. Rev. 41, 797–828 (2012)CrossRefGoogle Scholar
  7. 7.
    R. Kotz, M. Carlen, Principles and applications of electrochemical capacitors. Electrochim. Acta 45, 2483–2498 (2000)CrossRefGoogle Scholar
  8. 8.
    C. Zhang, B. Anasori, A. Seral-Ascaso, S.-H. Park, N. McEvoy, A. Shmeliov, G.S. Duesberg, J.N. Coleman, Y. Gogotsi, V. Nicolosi, Transparent, flexible, and conductive 2D titanium carbide (MXene) films with high volumetric capacitance. Adv. Mater. 29, 1702678 (2017)CrossRefGoogle Scholar
  9. 9.
    B. Vidhyadharan, I.I. Misnon, R.A. Aziz, K.P. Padmasree, M.M. Yusoff, R. Jose, Superior supercapacitive performance in electrospun copper oxide nanowire electrodes. J. Mater. Chem. A 2, 6578–6588 (2014)CrossRefGoogle Scholar
  10. 10.
    G. Wang, J. Huang, S. Chen, Y. Gao, D. Cao, Preparation and supercapacitance of CuO nanosheet arrays grown on nickel foam. J. Power Sources 196, 5756–5760 (2011)CrossRefGoogle Scholar
  11. 11.
    Y.H. Li, S. Chang, X.L. Liu, J.C. Huang, J.L. Yin, G.L. Wang, D.X. Cao, Nanostructured CuO directly grown on copper foam and their supercapacitance performance. Electrochim. Acta 85, 393–398 (2012)CrossRefGoogle Scholar
  12. 12.
    X. Zhang, J. Zhou, W. Dou, J. Wang, X. Mu, Y. Zhang, A. Abas, Q. Su, W. Lan, E. Xie, C. Zhang, Room-temperature vertically-aligned copper oxide nanoblades synthesized by electrochemical restructuring of copper hydroxide nanorods: an electrode for high energy density hybrid device. J. Power Sources 383, 124–132 (2018)CrossRefGoogle Scholar
  13. 13.
    C. Zhu, Y. Li, Q. Su, B. Lu, J. Pan, J. Zhang, E. Xie, W. Lan, Electrospinning direct preparation of SnO2/Fe2O3 heterojunction nanotubes as an efficient visible-light photocatalyst. J. Alloys Compd. 575, 333–338 (2013)CrossRefGoogle Scholar
  14. 14.
    X. Zhang, C. Zhang, A. Abas, Y. Zhang, X. Mu, J. Zhou, Q. Su, W. Lan, E. Xie, Ag nanoparticles enhanced vertically-aligned CuO nanowire arrays grown on Cu foam for stable hybrid supercapacitors with high energy density. Electrochim. Acta 296, 535–544 (2019)CrossRefGoogle Scholar
  15. 15.
    H. Sheng, X. Zhang, Y. Ma, P. Wang, J. Zhou, Q. Su, W. Lan, E. Xie, C.J. Zhang, Ultrathin, wrinkled, vertically aligned Co(OH)(2) nanosheets/Ag nanowires hybrid network for flexible transparent supercapacitor with high performance. ACS Appl. Mater. Interfaces. 11, 8992–9001 (2019)CrossRefGoogle Scholar
  16. 16.
    A. Pendashteh, M.F. Mousavi, M.S. Rahmanifar, Fabrication of anchored copper oxide nanoparticles on graphene oxide nanosheets via an electrostatic coprecipitation and its application as supercapacitor. Electrochim. Acta 88, 347–357 (2013)CrossRefGoogle Scholar
  17. 17.
    Z. Cao, B. Wei, A. Perspective, Carbon nanotube macro-films for energy storage. Energy Environ. Sci. 6, 3183–3201 (2013)CrossRefGoogle Scholar
  18. 18.
    X. Wang, Y. Liu, Y. Wang, L. Jiao, CuO quantum dots embedded in carbon nanofibers as binder-free Anode for sodium ion batteries with enhanced properties. Small 12, 4865–4872 (2016)CrossRefGoogle Scholar
  19. 19.
    Q. Wu, Y. Xu, Z. Yao, A. Liu, G. Shi, Supercapacitors based on flexible graphene/polyaniline nanofiber composite films. ACS Nano. 4, 1963–1970 (2010)CrossRefGoogle Scholar
  20. 20.
    G.A. Snook, P. Kao, A.S. Best, Conducting-polymer-based supercapacitor devices and electrodes. J. Power Sources 196, 1–12 (2011)CrossRefGoogle Scholar
  21. 21.
    Z. Su, C. Yang, C. Xu, H. Wu, Z. Zhang, T. Liu, C. Zhang, Q. Yang, B. Li, F. Kang, Co-electro-deposition of the MnO2-PEDOT: PSS nanostructured composite for high areal mass, flexible asymmetric supercapacitor devices. J. Mater. Chem. A 1, 12432–12440 (2013)CrossRefGoogle Scholar
  22. 22.
    G. Greczynski, T. Kugler, W.R. Salaneck, Characterization of the PEDOT-PSS system by means of X-ray and ultraviolet photoelectron spectroscopy. Thin Solid Films 354, 129–135 (1999)CrossRefGoogle Scholar
  23. 23.
    J. Ouyang, Q.F. Xu, C.W. Chu, Y. Yang, G. Li, J. Shinar, On the mechanism of conductivity enhancement in poly (3,4-Ethylenedioxythiophene): Poly(Styrene Sulfonate) film through solvent treatment. Polymer 45, 8443–8450 (2004)CrossRefGoogle Scholar
  24. 24.
    X. Crispin, F.L.E. Jakobsson, A. Crispin, P.C.M. Grim, P. Andersson, A. Volodin, C. van Haesendonck, M. Van der Auweraer, W.R. Salaneck, M. Berggren, The origin of the high conductivity of Poly(3,4-Ethylenedioxythiophene)-Poly(Styrenesulfonate) (PEDOT- PSS) plastic electrodes. Chem. Mater. 18, 4354–4360 (2006)CrossRefGoogle Scholar
  25. 25.
    A.M. Nardes, M. Kemerink, M.M. de Kok, E. Vinken, K. Maturova, R.A.J. Janssen, Conductivity, work function, and environmental stability of PEDOT: PSS thin films treated with sorbitol. Org. Electron. 9, 727–734 (2008)CrossRefGoogle Scholar
  26. 26.
    Y. Hou, Y.W. Cheng, T. Hobson, J. Liu, Design and synthesis of hierarchical MnO2 nanospheres/carbon nanotubes/conducting polymer ternary composite for high performance electrochemical electrodes. Nano Lett. 10, 2727–2733 (2010)CrossRefGoogle Scholar
  27. 27.
    G. Cai, P. Darmawan, M. Cui, J. Wang, J. Chen, S. Magdassi, P.S. Lee, Highly stable transparent conductive silver grid/PEDOT:PSS electrodes for integrated bifunctional flexible electrochromic supercapacitors. Adv. Energy Mater. 6, 1501882 (2016)CrossRefGoogle Scholar
  28. 28.
    L.-M. Huang, H.-Z. Lin, T.-C. Wen, A. Gopalan, Highly dispersed hydrous ruthenium oxide in Poly(3,4-ethylenedioxythiophene)-Poly(styrene sulfonic acid) for supercapacitor electrode. Electrochim. Acta 52, 1058–1063 (2006)CrossRefGoogle Scholar
  29. 29.
    R. Liu, S.B. Lee, MnO2/Poly(3,4-ethylenedioxythiophene) coaxial nanowires by one-step coelectrodeposition for electrochemical energy storage. J. Am. Chem. Soc. 130, 2942–2943 (2008)CrossRefGoogle Scholar
  30. 30.
    F.-J. Liu, Electrodeposition of manganese dioxide in three-dimensional Poly(3,4-ethylenedioxythiophene)-Poly(styrene sulfonic acid)-Polyaniline for supercapacitor. J. Power Sources 182, 383–388 (2008)CrossRefGoogle Scholar
  31. 31.
    H.F. Goldstein, D.S. Kim, P.Y. Yu, L.C. Bourne, J.P. Chaminade, L. Nganga, Raman-study of CuO single-crystals. Phys. Rev. B 41, 7192–7194 (1990)CrossRefGoogle Scholar
  32. 32.
    J.C. Irwin, T. Wei, J. Franck, Raman-scattering investigation of Cu18O. J. Phys. Condes. Matter 3, 299–306 (1991)CrossRefGoogle Scholar
  33. 33.
    J.F. Xu, W. Ji, Z.X. Shen, W.S. Li, S.H. Tang, X.R. Ye, D.Z. Jia, X.Q. Xin, Raman spectra of CuO nanocrystals. J. Raman Spectrosc. 30, 413–415 (1999)CrossRefGoogle Scholar
  34. 34.
    D. Antiohos, G. Folkes, P. Sherrell, S. Ashraf, G.G. Wallace, P. Aitchison, A.T. Harris, J. Chen, A.I. Minett, Compositional effects of PEDOT-PSS/single walled carbon nanotube films on supercapacitor device performance. J. Mater. Chem. 21, 15987–15994 (2011)CrossRefGoogle Scholar
  35. 35.
    N. Kumar, R.T. Ginting, J.-W. Kang, Flexible, large-area, all-solid-state supercapacitors using spray deposited PEDOT:PSS/reduced-graphene oxide. Electrochim. Acta 270, 37–47 (2018)CrossRefGoogle Scholar
  36. 36.
    H.H. Lin, C.Y. Wang, H.C. Shih, J.M. Chen, C.T. Hsieh, Characterizing well-ordered CuO nanofibrils synthesized through gas-solid reactions. J. Appl. Phys. 95, 5889–5895 (2004)CrossRefGoogle Scholar
  37. 37.
    J.Y. Kim, J.H. Jung, D.E. Lee, J. Joo, Enhancement of electrical conductivity of Poly(3,4-Ethylenedioxythiophene)/Poly(4-Styrenesulfonate) by a change of solvents. Synth. Met. 126, 311–316 (2002)CrossRefGoogle Scholar
  38. 38.
    S.K.M. Jonsson, J. Birgerson, X. Crispin, G. Greczynski, W. Osikowicz, A.W.D. van der Gon, W.R. Salaneck, M. Fahlman, The effects of solvents on the morphology and sheet resistance in Poly (3,4-Ethylenedioxythiophene)-Polystyrenesulfonic acid (PEDOT-PSS) films. Synth. Met. 139, 1–10 (2003)CrossRefGoogle Scholar
  39. 39.
    J. Chen, J. Xu, S. Zhou, N. Zhao, C.-P. Wong, Facile and scalable fabrication of three-dimensional Cu(OH)(2) nanoporous nanorods for solid-state supercapacitors. J. Mater. Chem. A 3, 17385–17391 (2015)CrossRefGoogle Scholar
  40. 40.
    L. Gao, X. Wang, Z. Xie, W. Song, L. Wang, X. Wu, F. Qu, D. Chen, G. Shen, High-performance energy-storage devices based on WO3 nanowire arrays/carbon cloth integrated electrodes. J. Mater. Chem. A 1, 7167–7173 (2013)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Key Laboratory of Special Function Materials and Structure Design, Ministry of Education, School of Physical Science and TechnologyLanzhou UniversityLanzhouPeople’s Republic of China
  2. 2.State Key Laboratory of Advanced Processing and Recycling of Non-ferrous MetalsLanzhou University of TechnologyLanzhouPeople’s Republic of China

Personalised recommendations