Hierarchical porous architecture on Ni foam created via an oxidization-reduction process and its application for supercapacitor

  • Chuntian Chen
  • Shuo Wang
  • Zhigang Peng
  • Guanghong AoEmail author


Three-dimensional (3D) porous metals, particularly those with a hierarchical porous architecture, are the desirable current collector for a wide variety of electrochemical devices. It is highly desirable to develop a facile process for fabrication of such metallic architectures. Here we propose a novel strategy, oxidization and reduction process, to in situ create micron-scale pores on the ligaments of the commercial Ni foam. Through this simple process, a hierarchical microporous Ni foam (HMNF) composed of large pore channels and micron-scale pores in skeleton is created. This process is simple and green, avoiding the use of sacrificial materials. Furthermore, nanocrystalline MnO2 is coated on a HMNF to construct a supercapacitor electrode. The results indicate that the created micron porous architectures of the HMNF-MnO2 electrode enhance not only the electrochemical performance but also the mechanical robustness, leading to a high capacitance and excellent cycling stability.



This work was supported by the Natural Science Foundation of China (11604065) and Innovative Foundation of Harbin under Contract (2016RQXXJ052).


  1. 1.
    A. Wittstock, V. Zielasek, J. Biener, C.M. Friend, M. Bäumer, Science 327, 319–322 (2010)CrossRefGoogle Scholar
  2. 2.
    J. Snyder, T. Fujita, M.W. Chen, J. Erlebacher, Nat. Mater. 9, 904–907 (2010)CrossRefGoogle Scholar
  3. 3.
    D.R. Rolison, Science 299, 1698–1701 (2003)CrossRefGoogle Scholar
  4. 4.
    Q.B. Yun, Y.B. He, W. Lv, Y. Zhao, B.H. Li, F.Y. Kang, Q.H. Yang, Adv. Mater. 28, 6932–6939 (2016)CrossRefGoogle Scholar
  5. 5.
    X.Y. Lang, A. Hirata, T. Fujita, M.W. Chen, Nat. Nanotechnol. 6, 232–236 (2011)CrossRefGoogle Scholar
  6. 6.
    F.H. Meng, Y. Ding, Adv. Mater. 23, 4098–4112 (2011)CrossRefGoogle Scholar
  7. 7.
    S. Park, T.D. Chung, H.C. Kim, Anal. Chem. 75, 3046–3049 (2003)CrossRefGoogle Scholar
  8. 8.
    T. Miyoshi, M. Itoh, S. Akiyama, A. Kitahara, Adv. Eng. Mater. 2, 179–183 (2000)CrossRefGoogle Scholar
  9. 9.
    M. Huang, F. Li, F. Dong, Y.X. Zhang, L.L. Zhang, J. Mater. Chem. A 3, 21380–21423 (2015)CrossRefGoogle Scholar
  10. 10.
    M. Huang, F. Li, X.L. Zhao, D. Luo, X.Q. You, Y.X. Zhang, G. Li, Electrochim. Acta 152, 172–177 (2015)CrossRefGoogle Scholar
  11. 11.
    M. Huang, R. Mi, H. Liu, F. Li, X.L. Zhao, W. Zhang, S.X. He, Y.X. Zhang, J. Power Sources 269, 760–767 (2014)CrossRefGoogle Scholar
  12. 12.
    M. Kundu, L. Liu, J. Power Sources 243, 676–681 (2013)CrossRefGoogle Scholar
  13. 13.
    W. Li, K. Xu, L. An, F. Jiang, X. Zhou, J. Yang, Z. Chen, R. Zou, J. Hu, J. Mater. Chem. A 2, 1443–1447 (2013)CrossRefGoogle Scholar
  14. 14.
    Y. Li, D. Cao, Y. Wang, S. Yang, D. Zhang, K. Ye, K. Cheng, J. Yin, G. Wang, Y. Xu, J. Power Sources 279, 138–145 (2015)CrossRefGoogle Scholar
  15. 15.
    J. Ji, L.L. Zhang, H. Ji, Y. Li, X. Zhao, X. Bai, X. Fan, F. Zhang, R.S. Ruoff, ACS Nano 7, 6237 (2013)CrossRefGoogle Scholar
  16. 16.
    G. Yu, L. Hu, N. Liu, H. Wang, M. Vosgueritchian, Y. Yang, Y. Cui, Z. Bao, Nano Lett. 11, 4438 (2015)CrossRefGoogle Scholar
  17. 17.
    T. Zhai, F. Wang, M. Yu, S. Xie, C. Liang, C. Li, F. Xiao, R. Tang, Q. Wu, X. Lu, Nanoscale 5, 6790–6796 (2013)CrossRefGoogle Scholar
  18. 18.
    F. Bidault, D.J.L. Brett, P.H. Middleton, N. Abson, N.P. Brandon, Int. J. Hydrog. Energy 34, 6799–6808 (2009)CrossRefGoogle Scholar
  19. 19.
    L.Q. Ma, Z.L. Song, Scr. Mater. 39, 1523–1528 (1998)CrossRefGoogle Scholar
  20. 20.
    J. Banhart, Prog. Mater Sci. 46, U553–U559 (2001)CrossRefGoogle Scholar
  21. 21.
    Y. Torres, J.J. Pavon, J.A. Rodriguez, J. Mater. Process. Technol. 212, 1061–1069 (2012)CrossRefGoogle Scholar
  22. 22.
    S. Cherevko, X.L. Xing, C.H. Chung, Electrochem. Commun. 12, 467–470 (2010)CrossRefGoogle Scholar
  23. 23.
    Y. Ding, Y.J. Kim, J. Erlebacher, Adv. Mater. 16, 1897 (2004)CrossRefGoogle Scholar
  24. 24.
    Y.Q. Li, X.M. Shi, X.Y. Lang, Z. Wen, J.C. Li, Q. Jiang, Adv. Funct. Mater. 26, 1830–1839 (2016)CrossRefGoogle Scholar
  25. 25.
    M. Yu, W. Wang, C. Li, T. Zhai, X. Lu, Y. Tong, NPG Asia Mater. 6, e129 (2014)CrossRefGoogle Scholar
  26. 26.
    G.R. Xu, Y. Wen, X.P. Min, W.H. Dong, A.P. Tang, H.S. Song, Electrochim. Acta 186, 133–141 (2015)CrossRefGoogle Scholar
  27. 27.
    Z. Wang, Y. Yan, Y. Chen, W. Han, M. Liu, Y. Zhang, Y. Xiong, K. Chen, Z. Lv, M. Liu, J. Mater. Chem. A. 5, 20709–20719 (2017)CrossRefGoogle Scholar
  28. 28.
    A. Faes, A. Nakajo, A. Hessler-Wyser, D. Dubois, A. Brisse, S. Modena, J.V. Herle, J. Power Sources 193, 55–64 (2009)CrossRefGoogle Scholar
  29. 29.
    T. Hibino, A. Hashimoto, T. Inoue, J. Tokuno, S. Yoshida, M. Sano, Science 288, 2031–2033 (2000)CrossRefGoogle Scholar
  30. 30.
    R. Nakamura, J.G. Lee, H. Mori, H. Nakajima, Philos. Mag. 88, 257–264 (2008)CrossRefGoogle Scholar
  31. 31.
    D. Waldbillig, A. Wood, D.G. Ivey, J. Power Sources 145, 206–215 (2005)CrossRefGoogle Scholar
  32. 32.
    M. Kuhn, T.W. Napporn, Energies 3, 57–134 (2010)CrossRefGoogle Scholar
  33. 33.
    Z.H. Wang, Y.M. Yan, M.T. Liu, Y.F. Chen, W.Q. Han, H.W. Bian, Y. Qiao, Y.P. Xiong, Z. Lv, Int. J. Hydrog. Energy 41, 22344–22353 (2016)CrossRefGoogle Scholar
  34. 34.
    H. Galinski, A. Bieberle-Hutter, J.L.M. Rupp, L.J. Gauckler, Acta Mater. 59, 6239–6245 (2011)CrossRefGoogle Scholar
  35. 35.
    N. Mironova-Ulmane, A. Kuzmin, I. Steins, J. Grabis, I. Sildos, M. Pars, J. Phys. 93, 012039 (2007)Google Scholar
  36. 36.
    S.L. Chou, F.Y. Cheng, J. Chen, J. Power Sources 162, 727–734 (2006)CrossRefGoogle Scholar
  37. 37.
    C. Julien, M. Massot, S. Rangan, M. Lemal, D. Guyomard, J. Raman Spectrosc. 33, 223–228 (2002)CrossRefGoogle Scholar
  38. 38.
    Y. Li, G. Wang, K. Ye, K. Cheng, Y. Pan, P. Yan, J. Yin, D. Cao, J. Power Sources 271, 582–588 (2014)CrossRefGoogle Scholar
  39. 39.
    H.H. Xu, X.L. Hu, Y.M. Sun, H.L. Yang, X.X. Liu, Y.H. Huang, Nano Res 8, 1148–1158 (2015)CrossRefGoogle Scholar
  40. 40.
    W. Wei, X. Cui, W. Chen, D.G. Ivey, J. Power Sources 186, 543–550 (2009)CrossRefGoogle Scholar
  41. 41.
    W. Wei, X. Cui, W. Chen, D.G. Ivey, Electrochim. Acta 54, 2271–2275 (2009)CrossRefGoogle Scholar
  42. 42.
    W. Wei, X. Cui, X. Mao, W. Chen, D.G. Ivey, Electrochim. Acta 56, 1619–1628 (2011)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Chuntian Chen
    • 1
  • Shuo Wang
    • 1
  • Zhigang Peng
    • 1
  • Guanghong Ao
    • 1
    Email author
  1. 1.Department of PhysicsHarbin University of Science and TechnologyHarbinPeople’s Republic of China

Personalised recommendations