Advertisement

Structural, optical and electrical behavior of ZnO@Ag core–shell nanocomposite synthesized via novel plasmon-green mediated approach

  • C. VivekEmail author
  • B. BalrajEmail author
  • S. Thangavel
Article
  • 41 Downloads

Abstract

The present investigation deals with the preparation of pure Zinc oxide (ZnO) and Zinc oxide (ZnO)@Silver (Ag) core–shell nanocomposites (CSNCs) via green approach. The C. auriculata leaf extract acted as the reducing agent to prepare ZnO@Ag CSNCs which served as core (ZnO) and shell (Ag) material. The Ag shell material was consequently grown over the surface of ZnO by using cationic surfactant (CTAB). In the formation of ZnO@Ag core–shell material, ZnO and Ag NPs had face-center-cubic and hexagonal wurtzite structures which were investigated by powder X-ray diffraction (PXRD) studies. The stretching and bending vibration of the various functional groups were observed from the prepared material using fourier transform infrared spectroscopy (FTIR) analysis. In diffuse reflectance spectrum (DRS) spectrum, energy band gap was achieved to be 3.72 eV and 3.96 eV respectively for ZnO NPs and ZnO@Ag CSNCs. From the result, energy band gap (0.24 eV) was slightly increased by occurrence of blue shift due to quantum confinement effect. The presence of surface defects, Zn interstitials and oxygen vacancies in the prepared material were primarily confirmed by Photoluminescence (PL) and Raman analysis. The scanning electron microscopy (SEM) and transmission electron microscopic (TEM) analysis were used to identify the core–shell formation of ZnO@Ag. The dielectric behavior of the prepared material was studied by observing the properties of dielectric constant, dielectric loss and ac conductivity with respect to different temperatures (313–423 K) and different frequencies (1 kHz to 1 MHz).

Notes

References

  1. 1.
    S.S. Satter, M. Hoque, M.M. Rahman, M.Y.A. Mollaha, M.A.B.H. Susan, An approach towards the synthesis and characterization of ZnO@Ag core@shell nanoparticles in water-in-oil microemulsion. J. RSC Adv. 4, 20612 (2014)CrossRefGoogle Scholar
  2. 2.
    H.-L. Jiang, T. Akita, T. Ishida, M. Haruta, Q. Xu, Synergistic catalysis of Au@Ag core–shell nanoparticles stabilized on metal-organic framework. J. Am. Chem. Soc. 133, 1304–1306 (2011)CrossRefGoogle Scholar
  3. 3.
    A.P. Douvalis, R. Zboril, A.B. Bourlinos, J. Tucek, S. Spyridi, T. Bakas, A facile synthetic route toward air-stable magnetic nanoalloys with Fe–Ni/Fe–Co core and iron oxide shell. J. Nanopart. Res. 14, 1130 (2012)CrossRefGoogle Scholar
  4. 4.
    D. Maity, G. Zoppellaro, V. Sedenkova, J. Tucek, K. Safarova, K. Polakova, K. Tomankova, C. Diwoky, R. Stollberger, L. Machala, R. Zboril, Surface design of core–shell superparamagnetic iron oxide nanoparticles drives record relaxivity values in functional MRI contrast agents. J. Chem. Commun. 48, 11398–11400 (2012)CrossRefGoogle Scholar
  5. 5.
    X. Pang, L. Zhao, W. Han, X. Xin, Z. Lin, A general and robust strategy for the synthesis of nearly monodisperse colloidal nanocrystals. Nat. Nanotechnol. 8, 426–431 (2013)CrossRefGoogle Scholar
  6. 6.
    M.B. Gawande, A. Goswami, T. Asefa, H. Guo, A.V. Biradar, D.L. Peng, R. Zboril, R.S. Varma, Core–shell nanoparticles: synthesis and applications in catalysis and electrocatalysis. Chem. Soc. Rev. 44(21), 7540–7590 (2015).  https://doi.org/10.1039/c5cs00343a CrossRefGoogle Scholar
  7. 7.
    N.S. Kumar, M. Ganapathy, S. Sharmila, M. Shankar, M. Vimalan, I.V. Potheher, ZnO/Ni(OH)2 core-shell nanoparticles: synthesis, optical, electrical and photoacoustic property analysis. J. Alloys Compd. 703, 624–632 (2017).  https://doi.org/10.1016/j.jallcom.2017.01.323 CrossRefGoogle Scholar
  8. 8.
    H. Wang, L.Y. Chen, Y.H. Feng, H.Y. Chen, Exploiting core-shell synergy for nanosynthesis and mechanistic investigation. J. Acc. Chem. Res. 46, 1636–1646 (2013)CrossRefGoogle Scholar
  9. 9.
    H. Amouri, C. Desmarets, J. Moussa, Confined nanospaces in metallocages: guest molecules, weakly encapsulated anions, and catalyst sequestration. J. Chem. Rev. 112, 2015–2041 (2012)CrossRefGoogle Scholar
  10. 10.
    L.J. Lauhon, M.S. Gudiksen, D. Wang, C.M. Lieber, Epitaxial core–shell and core–multishell nanowire heterostructures. Nature 420, 57–61 (2002)CrossRefGoogle Scholar
  11. 11.
    H.H. Park, K. Woo, J.P. Ahn, Core-shell bimetallic nanoparticles robustly fixed on the outermost surface of magnetic silica microspheres. J. Sci. Rep. 3, 1497 (2013)CrossRefGoogle Scholar
  12. 12.
    S. Azizi, R. Mohamad, R.A. Rahim, A.B. Moghaddam, M. Moniri, A. Ariff, W.Z. Saad, F. Namvab, ZnO–Ag core shell nanocomposite formed by green method using essential oil of wild ginger and their bactericidal and cytotoxic effects. Appl. Surf. Sci. 384, 517–524 (2016).  https://doi.org/10.1016/j.apsusc.2016.05.052 CrossRefGoogle Scholar
  13. 13.
    S.K. Park, Y.H. Kim, H.S. Kim, J.I. Han, High performance solution-processed and lithographically patterned zinc–tin oxide thin-film transistors with good operational stability. Electrochem. Solid-State Lett. 12(7), H256–H258 (2009)CrossRefGoogle Scholar
  14. 14.
    N. Zhang, S. Liu, X. Fu, Y.J. Xu, Synthesis of M@TiO2 (M = Au, Pd, Pt) core–shell nanocomposites with tunable photo reactivity. J. Phys. Chem. C 115, 9136–9145 (2011)CrossRefGoogle Scholar
  15. 15.
    Q. Xiang, G. Meng, Y. Zhang, J. Xu, P.E. Xu, Q. Pan, W. Yu, Ag nanoparticle embedded- ZnO nanorods synthesized via a photochemical method and its gas-sensing properties. Sens. Actuator. B 143, 635–640 (2010)CrossRefGoogle Scholar
  16. 16.
    S. Azizi, M.B. Ahmad, M.Z. Hussein, N.A. Ibrahim, Synthesis, antibacterial and thermal studies of cellulose nanocrystal stabilized ZnO–Ag heterostructure nanoparticles. Molecules 18, 6269–6280 (2013)CrossRefGoogle Scholar
  17. 17.
    S. Siuleiman, N. Kaneva, A. Bojinova, K. Papazova, A. Apostolov, D. Dimitrov, Photodegradation of orange II by Zno and TiO2 powders and nanowire ZnO and ZnO/TiO2 thin films. Colloids Surf. A 460, 408–413 (2014)CrossRefGoogle Scholar
  18. 18.
    R.A. Rakkesh, S. Balakumar, Facile synthesis of ZnO/TiO2 core–shell nanostructures and their photocatalytic activities. J. Nanosci. Nanotechnol. 13, 370–376 (2013)CrossRefGoogle Scholar
  19. 19.
    Z. Zang, A. Nakamura, J. Temmyo, Single cuprous oxide films synthesized by radical oxidation at low temperature for PV application. Opt. Express 21(9), 11448–11456 (2013).  https://doi.org/10.1364/oe.21.011448 CrossRefGoogle Scholar
  20. 20.
    Z. Zang, X. Zeng, J. Du, M. Wang, X. Tang, Femtosecond laser direct writing of microholes on roughened ZnO for output power enhancement of InGaN light-emitting diodes. Opt. Lett. 41(15), 3463–3466 (2016).  https://doi.org/10.1364/ol.41.003463 CrossRefGoogle Scholar
  21. 21.
    Z. Zang, X. Tang, Enhanced fluorescence imaging performance of hydrophobic colloidal ZnO nanoparticles by a facile method. J. Alloys Compd. 619, 98–101 (2015)CrossRefGoogle Scholar
  22. 22.
    W. Estrada, A.M. Andersson, C.G. Granqvist, Electrochromic nickel-oxide-based coatings made by reactive DC magnetron sputtering: preparation and optical properties. J. Appl. Phys. 64, 3678–3683 (1988)CrossRefGoogle Scholar
  23. 23.
    D. Adler, J. Feinleib, Electrical and optical properties of narrow-band materials. Phys. Rev. B 2(8), 3112–3134 (1970)CrossRefGoogle Scholar
  24. 24.
    M. Rubinstein, R.H. Kodama, S.A. Makhlouf, Electron spin resonance study of NiO antiferromagnetic nanoparticles. J. Magn. Mater. 234, 289–293 (2001)CrossRefGoogle Scholar
  25. 25.
    S. Seo, M.J. Lee, D.H. Seo, E.J. Jeoung, D.S. Suh, Y.S. Joung, I.K. Yoo, I.R. Hwang, S.H. Kim, I.S. Byun, J.S. Kim, J.S. Choi, B.H. Park, Reproducible resistance switching in polycrystalline NiO films. Appl. Phys. Lett. 85, 5655 (2004)CrossRefGoogle Scholar
  26. 26.
    V.P. Dinesh, P. Biji, A. Ashok, S.K. Dhara, M. Kamruddin, A.K. Tyagi, B. Raj, Plasmon-mediated, highly enhanced photocatalytic degradation of industrial textile dyes using hybrid ZnO@Ag core–shell nanorods. J. RSC Adv. 4, 58930–58940 (2014)CrossRefGoogle Scholar
  27. 27.
    C.D. Gu, C. Cheng, H.Y. Huang, T.L. Wong, N. Wang, T.Y. Zhang, Growth and photocatalytic activity of dendrite-like ZnO@Ag heterostructure nanocrystals. Cryst. Growth Des. 9, 3278–3285 (2009)CrossRefGoogle Scholar
  28. 28.
    Y.H. Zheng, C.Q. Chen, Y.Y. Zhan, X.Y. Lin, Q. Zheng, K.M. Wei, J.F. Zhu, Photocatalytic activity of Ag/ZnO heterostructure nanocatalyst: correlation between structure and property. J. Phys. Chem. C 112, 10773–10777 (2008)CrossRefGoogle Scholar
  29. 29.
    D.D. Lin, H. Wu, R. Zhang, W. Pan, Enhanced photocatalysis of electrospun Ag–ZnO heterostructured nanofibers. Chem. Mater. 21, 3479–3484 (2009)CrossRefGoogle Scholar
  30. 30.
    Y.H. Zheng, L.R. Zheng, Y.Y. Zhan, X.Y. Lin, Q. Zheng, K.M. Wei, Ag/ZnO heterostructure nanocrystals: synthesis, characterization, and photocatalysis. Inorg. Chem. 46, 6980–6986 (2007)CrossRefGoogle Scholar
  31. 31.
    S. Azizi, M.B. Ahmad, F. Namvar, R. Mohamad, Green biosynthesis and characterization of zinc oxide nanoparticles using brown marine macroalga Sargassum muticum aqueous extract. Mater. Lett. 116, 275–277 (2014)CrossRefGoogle Scholar
  32. 32.
    D. Suresh, P.C. Nethravathi, H. Rajanaika, H. Nagabhushana, S.C. Sharma, Green synthesis of multifunctional zinc oxide (ZnO) nanoparticles using Cassia fistula plant extract and their photodegradative, antioxidant and antibacterial activities. Mater. Sci. Semiconduct. Process. 31, 446–454 (2015)CrossRefGoogle Scholar
  33. 33.
    M. Anbuvannan, M. Ramesh, G. Viruthagiri, N. Shanmugam, N. Kannadasan, Synthesis, characterization and photocatalytic activity of ZnO nanoparticles prepared by biological method. J. Spectrochim. Acta. A 143, 304–308 (2015)CrossRefGoogle Scholar
  34. 34.
    R. Rajeswari, T. Pitchai, T. Rangasamy, S. Sridhar, A. Viswanathan, Green synthesis of ZnO nanoparticles using carica papaya leaf extracts for photocatalytic and photovoltaic applications. J. Mater. Sci. 28, 10374–10381 (2017)Google Scholar
  35. 35.
    P. Ghorbani, M. Soltani, M. Homayouni-Tabrizi, F. Namvar, S. Azizi, R. Mohammad, A. Moghaddam, Sumac silver novel biodegradable nano composite for bio-medical application: antibacterial activity. J. Mol. 20(7), 12946–12958 (2015)CrossRefGoogle Scholar
  36. 36.
    K. Sahayaraj, M. Roobadevi, S. Rajesh, S. Azizi, Vernonia cinerea (L.) Less. silver nanocomposite and its antibacterial activity against a cotton pathogen. Res. Chem. Intermed. 41(8), 5495–5507 (2015)CrossRefGoogle Scholar
  37. 37.
    B. Sadeghi, M. Mohammadzadeh, B. Babakhani, Green synthesis of gold nanoparticles using Stevia rebaudiana leaf extracts: characterization and their stability. J. Photochem. Photobiol. B 148, 101–106 (2015)CrossRefGoogle Scholar
  38. 38.
    M. Ganapathy, N. Senthilkumar, M. Vimalan, R. Jeysekaran, I.V. Potheher, Studies on optical and electrical properties of green synthesized TiO2@ Ag core–shell nanocomposite material. Mater. Res. Express 5(4), 045020 (2018)CrossRefGoogle Scholar
  39. 39.
    N. Senthilkumar, M. Ganapathy, A. Arulraj, M. Meena, M. Vimalan, I. Vetha Potheher, Two step synthesis of ZnO/Ag and ZnO/Au core–shell nanocomposites: structural, optical and electrical property analysis. J. Alloys Compd. 750, 171–181 (2018)CrossRefGoogle Scholar
  40. 40.
    R. Aladpoosh, M. Montazer, Nano-photo active cellulosic fabric through in situ phytosynthesis of star-like Ag/ZnO nanocomposites: investigation and optimization of attributes associated with photocatalytic activity. Carbohyd. Polym. 141, 116–125 (2016)CrossRefGoogle Scholar
  41. 41.
    M. Khan, C. Wei, M. Chen, J. Tao, N. Huang, Z. Qi, L. Li, CTAB-mediated synthesis and characterization of ZnO/Ag core–shell nanocomposites. J. Alloys Compd. 612, 306–314 (2014)CrossRefGoogle Scholar
  42. 42.
    V.P. Dinesh, P. Biji, M. Kumaravel, A.K. Tyagi, M. Kamaruddin, Synthesis and characterization of hybrid ZnO@Ag core–shell nanospheres for gas sensor applications. J. Mater. Sci. Forum 710, 768–773 (2012)CrossRefGoogle Scholar
  43. 43.
    S. Ghosh, V.S. Goudar, K.G. Padmalekha, S.V. Bhat, S.S. Indic, H.N. Vasan, ZnO/Ag nanohybrid: synthesis, characterization, synergistic antibacterial activity and its mechanism. J. RSC Adv. 2, 930–940 (2012)CrossRefGoogle Scholar
  44. 44.
    I. Matai, A. Sachdev, P. Dubey, S.U. Kumar, B. Bhushan, P. Gopinath, Antibacterial activity and mechanism of Ag–ZnO nanocomposite on S. aureus and GFP-expressing antibiotic resistant E. coli. J. Colloids Surf. B 115, 359–367 (2014)CrossRefGoogle Scholar
  45. 45.
    S. Mukhopadhyay, P.P. Das, S. Maity, P. Ghosh, P.S. Devi, Solution grown ZnO rods: synthesis, characterization and defect mediated photocatalytic activity. Appl. Catal. B 165, 128–138 (2015)CrossRefGoogle Scholar
  46. 46.
    Y. Zhang, H.B. Jia, R.M. Wang, C.P. Chen, X.H. Luo, D.P. Yu, Low-temperature growth and Raman scattering study of vertically aligned ZnO nanowires on Si substrate. Appl. Phys. Lett. 83, 4631 (2003)CrossRefGoogle Scholar
  47. 47.
    R. Zamiri, A. Zakaria, R. Jorfi, G. Zamiri, M.S. Mojdehi, H.A. Ahangar, A.K. Zak, Laser assisted fabrication of ZnO/Ag and ZnO/Au core–shell nanocomposites. Appl. Phys. A 111, 487–493 (2013)CrossRefGoogle Scholar
  48. 48.
    A. Alkauskas, A. Pasquarello, Band-edge problem in the theoretical determination of defect energy levels: the O vacancy in ZnO as a benchmark case. Phys. Rev. B 84, 125206 (2011)CrossRefGoogle Scholar
  49. 49.
    C. Vivek, C. Siva, G. Mohan Kumar, Optical and recyclable photocatalytic properties of silica supported ZnO/Au heterostructures under sun light. J. Mater. Sci. 29, 667–673 (2018)Google Scholar
  50. 50.
    A. Sridevi, C. Siva, B. Balraj, G.K.D. Prasanna Venkatesan, Green synthesis and electrical properties of p-CuO/n-ZnO heterojunction diodes. J. Inorg. Organomet. Polym. Mater. 29, 535–540 (2019)CrossRefGoogle Scholar
  51. 51.
    N.K. Singh, S. Shrivastava, S. Rath, S. Annapoorni, Optical and room temperature sensing properties of highly oxygen deficient flower-like ZnO nanostructures. J. Appl. Surf. Sci. 257, 1544–1549 (2010)CrossRefGoogle Scholar
  52. 52.
    J.H. Yang, J.H. Zheng, H.J. Zhai, L.L. Yang, Low temperature hydrothermal growth and optical properties of ZnO nanorods. J. Cryst. Res. Technol. 44, 87–91 (2009)CrossRefGoogle Scholar
  53. 53.
    N.Y. Garces, L. Wang, L. Bai, N.C. Giles, L.E. Halliburton, G. Cantwell, Role of copper in the green luminescence from ZnO crystals. Appl. Phys. Lett. 4, 622–624 (2002)CrossRefGoogle Scholar
  54. 54.
    V. Subramanian, E.E. Wolf, P.V. Kamat, Green emission to probe photoinduced charging events in ZnO–Au nanoparticles charge distribution and fermi-level equilibration. J. Phys. Chem. B 107, 7479–7485 (2003)CrossRefGoogle Scholar
  55. 55.
    S. Sagadevan, K. Pal, Z.Z. Chowdhury, M.E. Hoque, Structural, dielectric and optical investigation of chemically synthesized Ag-doped ZnO nanoparticles composites. J. Sol–Gel Sci. Technol. 83, 394–404 (2017)CrossRefGoogle Scholar
  56. 56.
    S. Abed, H. Bougharraf, K. Bouchouit, Z. Sofiani, B. Derkowska-Zielinska, M.S. Aida, B. Sahraoui, Influence of Bi doping on the electrical and optical properties of ZnO thin films. Superlattice Microstruct. 85, 370–378 (2015)CrossRefGoogle Scholar
  57. 57.
    R. Jeyachitra, V. Senthilnathan, T.S. Senthil, Studies on electrical behavior of Fe doped ZnO nanoparticles prepared via co-precipitation approach for photo-catalytic application. J. Mater. Sci. 29(2), 1189–1197 (2018).  https://doi.org/10.1007/s10854-017-8021-0 Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Electronics and Communication EngineeringM.Kumarasamy College of EngineeringKarurIndia
  2. 2.Department of Electrical and Electronics EngineeringSri Krishna College of TechnologyCoimbatoreIndia
  3. 3.Department of Electrical and Electronics EngineeringNational Institute of Technology PuducherryKaraikalIndia

Personalised recommendations