Hydrothermal and solvothermal synthesis of nanorods and 3D (micro/nano) V2O5 on macro PSi substrate for pH-EGFET sensors

  • Lary H. SlewaEmail author
  • Tariq A. Abbas
  • Naser M. Ahmed


Macro porous silicon (PSi) with porosity of 36.3%, depth of 12 μm, and average pore diameter of 1.38 μm was fabricated by electrochemically etching a p-type single crystal silicon wafer. Two different morphologies of vanadium pentoxide (V2O5), V2O5 nanorods and 3D (micro/nano) V2O5 spheres, were grown on the surface and wall of the prepared macro PSi by hydrothermal and solvothermal methods using deionized water and ethanol as solvents, respectively. The morphology and crystallinity of the as-prepared and annealed V2O5/macro PSi were characterized using different analytical techniques that include field emission scanning electron microscope (FESEM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), energy dispersive X-ray (EDX), and ultraviolet–visible-near infrared spectroscopy (UV–VIS-NIR) for optical properties. After annealing and improving their crystal structure, EGFETs based on the V2O5 nanorods/macro PSi and 3D (micro/nano) V2O5/macro PSi were fabricated and examined for pH sensor applications. The sensitivity of the sensor was significantly improved when ethanol was preferably used as a solvent in place of water. The {3D (micro/nano) V2O5/macro PSi} based EGFET sensor exhibited perfect sensitivity and linearity of 91.1 mV/pH and 99.67%, respectively, in the range of pH 2–12. The work reports the conditions under which the pH sensitivity of pH-EGFET sensor can be significantly enhanced. The results show that by using (micro/nano) structures of V2O5 as a pH-EGFET sensor, the sensor displays considerably higher sensitivity that surpass the Nernst limit, which is regarded as an important performance of the prepared pH sensor. Considering the benefits of the fabrication method and distinct characteristics of micro/nano V2O5 spheres and PSi, 3D (micro/nano) V2O5 spheres grown on PSi can be considered as a potential candidate for pH sensor applications.



  1. 1.
    W.-D. Huang, H. Cao, S. Deb, M. Chiao, J.-C. Chiao, Sens. Actuators A 169, 1–11 (2011)CrossRefGoogle Scholar
  2. 2.
    F.A. Sabah, N.M. Ahmed, Z. Hassan, M.A. Almessiere, Sens. Actuators B 247, 197–215 (2017)CrossRefGoogle Scholar
  3. 3.
    N. Abd-Alghafour, N.M. Ahmed, Z. Hassan, M.A. Almessiere, M. Bououdina, N.H. Al-Hardan, J. Mater. Sci 28, 1364–1369 (2017)Google Scholar
  4. 4.
    V. Pachauri, S. Ingebrandt, Essays Biochem. 60, 81–90 (2016)CrossRefGoogle Scholar
  5. 5.
    S.M. Sze, K.K. Ng, Physics of semiconductor devices (John wiley & sons, New Jersey, 2006)CrossRefGoogle Scholar
  6. 6.
    R. Thangarasu, E. Thangavel, J. Chandrasekaran, O. Balasundaram, J. Mater. Sci. 30, 4238–4249 (2019)Google Scholar
  7. 7.
    M.S. Raman, J. Chandrasekaran, R. Priya, M. Chavali, R. Suresh, Mater. Sci. Semicond. Process. 41, 497–507 (2016)CrossRefGoogle Scholar
  8. 8.
    V. Khranovskyy, R. Yakimova, Phys. B 407, 1533–1537 (2012)CrossRefGoogle Scholar
  9. 9.
    X. Yang, H. Xie, H. Fu, X. An, X. Jiang, A. Yu, RSC Adv. 6, 87649–87655 (2016)CrossRefGoogle Scholar
  10. 10.
    M. Liu, B. Su, Y. Tang, X. Jiang, A. Yu, Adv. Energy Mater. 7, 1700885 (2017)CrossRefGoogle Scholar
  11. 11.
    K. Schneider, M. Lubecka, A. Czapla, Sens. Actuators B 236, 970–977 (2016)CrossRefGoogle Scholar
  12. 12.
    Y.-L. Ding, Y. Wen, C. Wu, P.A. van Aken, J. Maier, Y. Yu, Nano Lett. 15, 1388–1394 (2015)CrossRefGoogle Scholar
  13. 13.
    P. Liu, K. Zhu, K. Bian, Y. Xu, F. Zhang, W. Zhang, J. Zhang, W. Huang, J. Alloys Compd. 765, 901–906 (2018)CrossRefGoogle Scholar
  14. 14.
    Korotcenkov G (2016) Porous silicon: from formation to application: formation and properties, Volume one: formation and properties. CRC Press, Boca RatonGoogle Scholar
  15. 15.
    F.A. Harraz, Sens. Actuators B 202, 897–912 (2014)CrossRefGoogle Scholar
  16. 16.
    K. Kobayashi, F.A. Harraz, S. Izuo, T. Sakka, Y. Ogata, Phys. Stat. Sol. (A) 204, 1321–1326 (2007)CrossRefGoogle Scholar
  17. 17.
    K.V. Kireeti, G. Chandrakanth, M.M. Kadam, N. Jha, RSC Adv. 6, 84825–84836 (2016)CrossRefGoogle Scholar
  18. 18.
    H. Pang, F. Gao, Q. Lu, CrystEngComm 12, 406–412 (2010)CrossRefGoogle Scholar
  19. 19.
    S. Kumar, F. Maury, N. Bahlawane, Mater. Today Phys. 2, 1–5 (2017)CrossRefGoogle Scholar
  20. 20.
    B. Šurca, B. Orel, Electrochim. Acta 44, 3051–3057 (1999)CrossRefGoogle Scholar
  21. 21.
    M. Derkaoui, I. Khenfouch, B.M. Elmokri, M.S. Mothudi, S.J. Dhlamini, I. Moloi, A. Zorkani, M. Jorio, Y. Maaza, C. Qin, H. Liu, J. Yu, Yu, IOP Conf. Ser. Mater. Sci. Eng. 186, 012007 (2017)Google Scholar
  22. 22.
    M.M. Margoni, S. Mathuri, K. Ramamurthi, R.R. Babu, K. Sethuraman, Appl. Surf. Sci. 418, 280–290 (2017)CrossRefGoogle Scholar
  23. 23.
    R. Köferstein, L. Jäger, S.G. Ebbinghaus, Solid State Ionics 249, 1–5 (2013)CrossRefGoogle Scholar
  24. 24.
    T. McLean, Prog. Semicond. 5, 53–102 (1960)Google Scholar
  25. 25.
    F.A. Sabah, N.M. Ahmed, Z. Hassan, M.A. Almessiere, Mater. Sci. Semicond. Process. 63, 269–278 (2017)CrossRefGoogle Scholar
  26. 26.
    R.R.K. Reddy, A. Chadha, E. Bhattacharya, Biosens. Bioelectron. 16, 313–317 (2001)CrossRefGoogle Scholar
  27. 27.
    N. Al-Hardan, M. Abdul Hamid, N. Ahmed, A. Jalar, R. Shamsudin, N. Othman, L. Keng, W. Chiu, H. Al-Rawi, Sensors 16, 839 (2016)CrossRefGoogle Scholar
  28. 28.
    N.M. Ahmed, E. Kabaa, M. Jaafar, A. Omar, J. Electron. Mater. 46, 5804–5813 (2017)CrossRefGoogle Scholar
  29. 29.
    E.J. Guidelli, E.M. Guerra, M. Mulato, ECS J. Solid State Sci. Technol. 1, N39–N44 (2012)CrossRefGoogle Scholar
  30. 30.
    E.M. Guerra, M. Mulato, J. Sol Gel Sci. Technol. 52, 315 (2009)CrossRefGoogle Scholar
  31. 31.
    E.M. Guerra, G.R. Silva, M. Mulato, Solid State Sci. 11, 456–460 (2009)CrossRefGoogle Scholar
  32. 32.
    D.H. Das, C.-H. Ko, L.-B. Chen, C.-S. Chang, F.-C. Lai, L. Chu, R.-M. Chow, Lin. Sens. Actuators B Chem. 205, 199 (2014)CrossRefGoogle Scholar
  33. 33.
    H.-H. Li, W.-S. Dai, J.-C. Chou, H.-C. Cheng, IEEE Electron Device Lett. 33, 1495–1497 (2012)CrossRefGoogle Scholar
  34. 34.
    L.-T. Yin, J.-C. Chou, W.-Y. Chung, T.-P. Sun, S.-K. Hsiung, Mater. Chem. Phys. 70, 12–16 (2001)CrossRefGoogle Scholar
  35. 35.
    K.B. Parizi, X. Xu, A. Pal, X. Hu, H.P. Wong, Sci. Rep. 7, 41305 (2017)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Lary H. Slewa
    • 1
    Email author
  • Tariq A. Abbas
    • 1
  • Naser M. Ahmed
    • 2
  1. 1.Physics Department, College of ScienceSalahaddin UniversityErbilIraq
  2. 2.School of PhysicsUniversity Sains MalaysiaPenangMalaysia

Personalised recommendations