Advertisement

The impact of different Ag/(Ag + Cu) ratios on the properties of (Cu1−xAgx)2ZnSnS4 thin films

  • Shuai Yang
  • Shurong WangEmail author
  • Hua Liao
  • Xin Xu
  • Zhen Tang
  • Xinyu Li
  • Tingbao Wang
  • Xiang Li
  • Di Liu
Article
  • 76 Downloads

Abstract

In this work, the effects of 0%, 3%, 6% and 10% Ag doped on the properties of Cu2ZnSnS4 (CZTS) thin films and solar cells are investigated by sputtering different Ag intermediate layer on Mo-coated soda lime glass substrate. The result shows that the partial substitution of Ag with Cu for (Cu1−xAgx)2ZTS4 (CAZTS) thin films not only can obtain the uniform and compact grains with larger size, but also can reduce the amount of CuZn anti-site and Cu vacancies (VCu) and decrease the thickness of MoS2 and voids at the back contact. Therefore, the CAZTS solar cells can attain a higher open circuit voltage (Voc), short circuit density (Jsc), fill factor (FF) and efficiency compared with pure CZTS solar cells, which may be attributed to reducing the recombination at boundary grains and the interface between Mo and absorbers as well as the series resistance (Rs) due to the high-quality grains. However, the different Ag contents of CAZTS absorbers create the different propriety of CAZTS devices. In short, the performance of CAZTS devices are enhanced markedly under the optimal Ag-incorporation content, and the power conversion efficiency is successfully increased from 3.45 (x = 0) to 5.44% (x = 6%).

Notes

Acknowledgements

This work was supported by Collaborate Innovation Center of Research and Development of Renewable Energy in the Southwest Area(Grant No. 05300205020516009) and the National Natural Science Foundation of China(Grant No. 61167003).

References

  1. 1.
    T.K. Todorov, J. Tang, S. Bag, O. Gunawan, T. Gokmen, Y. Zhu, Adv. Energy Mater. 3, 34 (2012)CrossRefGoogle Scholar
  2. 2.
    D.B. Mitzi, O. Gunawan, T.K. Todorov, K. Wang, S. Guha, Sol. Energy Mater. Sol. Cell. 95, 1421 (2011)CrossRefGoogle Scholar
  3. 3.
    F. Meillaud, A. Shah, C. Droz, E. Vallat-Sauvain, C. Miazza, J. Sol. Energy Mater. Sol. Cells 90, 2952 (2006)CrossRefGoogle Scholar
  4. 4.
    C. Malerba, F. Biccari, C.L. Azanza Ricardo, M. Valentini, R. Chierchia, M. Müller, A. Santoni, E. Esposito, P. Mangiapane, P. Scardi, A. Mittiga, J. Alloys Compd. 582, 528 (2014)CrossRefGoogle Scholar
  5. 5.
    W. Wang, M.T. Winkler, O. Gunawan, T.K. Todorov, Y. Zhu, D.B. Mitzi, Adv. Energy Mater. 4, 1301465 (2014)CrossRefGoogle Scholar
  6. 6.
    C. Yan, J. Huang, K. Sun, S. Johnston, Y. Zhang, H. Sun, A. Pu, M. He, F. Liu, K. Eder, L. Yang, J.M. Cairney, N.J. Ekins-Daukes, Z. Hameiri, J.A. Stride, S. Chen, M.A. Green, X. Hao, Nat. Energy 3, 764 (2018)CrossRefGoogle Scholar
  7. 7.
    Y.S. Lee, T. Gershon, O. Gunawan, T.K. Todorov, T. Gokmen, Y. Virgus, S. Guha, Adv. Energy Mater. 5, 1401372 (2015)CrossRefGoogle Scholar
  8. 8.
    B. M. Kayes, H. Nie, R. Twist, S. G. Spruytte, F. Reinhardt, I. C. Kizilyali, G. S. Higashi, in: Proceedings of IEEE, 37th Photovoltaic Specialists Conference, 4 (2011)Google Scholar
  9. 9.
    M.A. Green, K. Emery, E.D. Dunlop, D.H. Levi, J. Hohl-Ebinger, A. Ho-Baillie, Prog. Photovolt. 21, 827 (2013)CrossRefGoogle Scholar
  10. 10.
    J.L. Wu, Y. Hirai, T. Kato, H. Sugimoto, V. Bermudez in: Proceedings of IEEE, 7th World Conference on Photovoltaic Energy Conversion, 10 (2018)Google Scholar
  11. 11.
    First Solar Press Release. First Solar Achieve New Conversion Efficiency World Record CdTe Solar PV Cells. (Originally published on Sustainnovate, 2016), https://cleantechnica.com/2016/02/23. Accessed 24 February 2016
  12. 12.
    S. Siebentritt, Thin Solid Films 535, 1 (2013)CrossRefGoogle Scholar
  13. 13.
    T. Gokmen, O. Gunawan, D.B. Mitzi, Appl. Phys. Lett. 105, 033903 (2014)CrossRefGoogle Scholar
  14. 14.
    Shiyou Chen, Jihui Yang, Xingao Gong, A. Walsh, Phys. Rev. B: Condens. Matter 81, 245204 (2010)Google Scholar
  15. 15.
    T. Gokmen, O. Gunawan, T.K. Todorov, D.B. Mitzi, Appl. Phys. Lett. 103, 103506 (2013)CrossRefGoogle Scholar
  16. 16.
    S. Chen, A. Walsh, X. Gong, S.H. Wei, Adv. Mater. 25, 1522 (2013)CrossRefGoogle Scholar
  17. 17.
    H. Sugimoto, C. Liao, H. Hiroi, in Proceedings of IEEE, 39th Photovoltaic Specialists Conference, 3208 (2013)Google Scholar
  18. 18.
    T. Gershon, D. Bishop, P. Antunez, S. Singh, K.W. Brew, Y.S. Lee, O. Gunawan, T. Gokmen, T. Todorov, R. Haight, Curr. Opin. Green Sustain. Chem. 4, 29 (2017)CrossRefGoogle Scholar
  19. 19.
    J. Li, H. Wang, W. Li, C. Chen, Z. Zhou, F. Liu, Y. Sun, J. Han, Y. Zhang, ACS Appl. Mater. Interfaces. 8, 10283 (2016)CrossRefGoogle Scholar
  20. 20.
    Z. Yuan, S. Chen, H. Xiang, X. Gong, A. Walsh, J.S. Park, I. Repins, S.H. Wei, Adv. Funct. Mater. 25, 6733 (2015)CrossRefGoogle Scholar
  21. 21.
    D. Shin, B. Saparov, D.B. Mitzi, Adv. Energy Mater. 7, 1602366 (2017)CrossRefGoogle Scholar
  22. 22.
    R. Haight, T. Gershon, O. Gunawan, P. Antunez, D. Bishop, Y.S. Lee, T. Gokmen, K. Sardashti, E. Chagarov, A. Kummel, Semicond. Sci. Technol. 32, 033004 (2017)CrossRefGoogle Scholar
  23. 23.
    C.J. Hages, S. Levcenco, C.K. Miskin, J.H. Alsmeier, D. Abou-Ras, R.G. Wilks, M. Bär, T. Unold, R. Agrawal, Prog. Photovoltaics 23, 376 (2015)CrossRefGoogle Scholar
  24. 24.
    C. Wang, S. Chen, J. Yang, L. Lang, H.J. Xiang, X. Gong, A. Walsh, S. Wei, Chem. Mater. 26, 3411 (2014)CrossRefGoogle Scholar
  25. 25.
    C. Yan, K. Sun, J. Huang, S. Johnston, F. Liu, B.P. Veettil, K. Sun, A. Pu, F. Zhou, J.A. Stride, M.A. Green, X. Hao, ACS Energy Lett. 2, 930 (2017)CrossRefGoogle Scholar
  26. 26.
    W. Gong, T. Tabata, K. Takei, M. Morihama, T. Maeda, T. Wada, Phys. Status Solidi 12, 700 (2015)CrossRefGoogle Scholar
  27. 27.
    K. Tai, O. Gunawan, M. Kuwahara, S. Chen, S.G. Mhaisalkar, C.H.A. Huan, D.B. Mitzi, Adv. Energy Mater. 6, 1501609 (2016)CrossRefGoogle Scholar
  28. 28.
    S. Chen, L. Wang, A. Walsh, X.G. Gong, S. Wei, Appl. Phys. Lett. 101, 223901 (2012)CrossRefGoogle Scholar
  29. 29.
    R. Haight, A. Barkhouse, O. Gunawan, B. Shin, M. Copel, M. Hopstaken, D.B. Mitzi, Appl. Phys. Lett. 98, 253502 (2011)CrossRefGoogle Scholar
  30. 30.
    Y. Qi, Q. Tian, Y. Meng, D. Kou, Z. Zhou, W. Zhou, W. Sixin, ACS Appl. Mater. Interfaces. 9, 21243 (2017)CrossRefGoogle Scholar
  31. 31.
    Y. Qi, D. Kou, W. Zhou, Z. Zhou, Q. Tian, Y. Meng, X. Liu, D. Zuliang, W. Sixin, E. Environ, Science 10, 2401 (2017)Google Scholar
  32. 32.
    H. Cui, X. Liu, F. Liu, X. Hao, N. Song, C. Yan, Appl. Phys. Lett. 104, 041115 (2014)CrossRefGoogle Scholar
  33. 33.
    C.M. Sutterfella, J.A. Stckelberger, H. Hagendorfer, F. La Mattina, L. Kranz, S. Nishiwaki, A.R. Uhl, Y. Romanyuk, A.N. Tiwari, Chem. Mater. 26, 1420 (2014)CrossRefGoogle Scholar
  34. 34.
    H. Guo, Y. Cui, Q. Tian, S. Gao, G. Wang, D. Pan, Cryst. Growth 15, 771 (2015)CrossRefGoogle Scholar
  35. 35.
    C.J. Hages, M.J. Koeper, R. Agrawal, Sol. Energy Mater. Sol. Cells 145, 342 (2016)CrossRefGoogle Scholar
  36. 36.
    W. Li, X. Liu, H. Cui, S. Huang, X. Hao, J. Alloy. Compd. 625, 277 (2015)CrossRefGoogle Scholar
  37. 37.
    X. Xin, S. Wang, X. Ma, M. Yang, L. Yilei, S. Yang, Z. Tang, Vaccum 157, 223 (2018)CrossRefGoogle Scholar
  38. 38.
    Shiyou Chen, A. Walsh, JiHui Yang, X. G. Gong, Lin Sun, Pingxiong Yang, Junhao Chu, Suhuai Wei, Phys. Rev. B: Condens. Matter. 83, 113 (2011)Google Scholar
  39. 39.
    J. Paier, R. Asahi, A. Nagoya, G. Kresse, G. Kresse, Phys. Rev. B 79, 1151268 (2009)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Shuai Yang
    • 1
  • Shurong Wang
    • 1
    • 2
    Email author
  • Hua Liao
    • 1
  • Xin Xu
    • 1
  • Zhen Tang
    • 1
  • Xinyu Li
    • 1
  • Tingbao Wang
    • 1
  • Xiang Li
    • 1
  • Di Liu
    • 1
  1. 1.Key Laboratory of Rural Energy Engineering in Yunnan ProvinceYunnan Normal UniversityKunmingPeople’s Republic of China
  2. 2.Yunnan Key Lab of Opto-electronic Information TechnologyYunnan Normal UniversityKunmingPeople’s Republic of China

Personalised recommendations