Advertisement

CoW metallization for high strength bonding to both sintered Ag joints and encapsulation resins

  • Tomohito IwashigeEmail author
  • Takeshi Endo
  • Kazuhiko Sugiura
  • Kazuhiro Tsuruta
  • Yuichi Sakuma
  • Seigo Kurosaka
  • Yukinori Oda
  • Chuantong Chen
  • Shijo Nagao
  • Katsuaki Suganuma
Article
  • 29 Downloads

Abstract

One of the applications of wide band gap semiconductors is high temperature operation. That application requires high temperature compatible (i) joining materials such as sinter Ag, (ii) encapsulation resins such as imide type primers or molding compounds, and (iii) metallization for those materials. Ag metallization, the best candidate metallization for sinter Ag materials, has difficulty in bonding to encapsulation resins. Conversely, Ni/Au-flash metallization enables strong resin adhesion but also demonstrates poor reliability for sintered Ag joints. There is no single metallization compatible to both sintered Ag and encapsulation resin for high temperature application. This paper reports on a single metallization, electroless plated CoW metallization, which has demonstrated the capability to achieve both (i) high-temperature reliability (250 °C for 500 h) for sintered Ag joints and (ii) high-temperature adhesion (at 225 °C) for encapsulation resins. Such results have not been achieved with either Ag or Au metallization. The shear strength of sintered Ag joints on CoW metallization exceeded 40 MPa. TEM observation revealed excellent bonding between the sintered Ag and the metal Co of the CoW metallization. Furthermore, CoW metallization also showed strong resin adhesion (about 21 MPa) at 225 °C. XPS analysis identified metal Co for bonding to sinter Ag and, Co(OH)2 and WOx for bonding to resin on the top surface of CoW metallization layer. The foregoing results indicate that CoW may well represent a new metallization process for the fabrication of high reliability and high-temperature compatible SiC power modules.

Notes

Acknowledgements

This work was supported in part by the New Energy and Industrial Technology Development Organization (NEDO) project “Establishment of a high-density and miniaturization foundation technology for the application of SiC power module in high temperature” (Grant No. P10022).

References

  1. 1.
    J.B. Casady, R.W. Johnson, Status of silicon carbide (SiC) as a wide-bandgap semiconductor for high-temperature applications: a review. Solid State Electron. 39, 1409–1422 (1996)CrossRefGoogle Scholar
  2. 2.
    C. Buttay, D. Planson, B. Allard, D. Bergogne, P. Bevilacqua, C. Joubert, M. Lazar, C. Martin, H. Morel, D. Tournier, C. Raynaud, State of the art of high temperature power electronics. Mater. Sci. Eng., B 176, 283–288 (2011)CrossRefGoogle Scholar
  3. 3.
    F. Wang, Z. Zhang, Overview of silicon carbide technology: device, converter, system, and application. CPSS Trans. Power Electron. Appl. 1, 13–32 (2016)CrossRefGoogle Scholar
  4. 4.
    J.A. Carr, D. Hotz, J.C. Balda, H.A. Mantooth, A. Ong, A. Agarwal, Assessing the impact of SiC MOSFETs on converter interfaces for distributed energy resources, IEEE Trans. Power Electron. 24, 260–270 (2009)CrossRefGoogle Scholar
  5. 5.
    J. Zhu, H. Kim, H. Chen, R. Erickson, D. Maksimovic (2018) High Efficiency SiC traction inverter for electric vehicle applications, 33nd annual IEEE applied power electronics conference and exposition (APEC) 1428-1433Google Scholar
  6. 6.
    B. Whitaker, A. Barkley, Z. Cole, B. Passmore, D. Martin, T.R. McNutt, A.B. Lostetter, J.S. Lee, K. Shiozaki, A high-density, high-efficiency, isolated on-board vehicle BATTERY charger utilizing silicon carbide power devices. IEEE Trans. Power Electron. 29, 2606–2617 (2014)CrossRefGoogle Scholar
  7. 7.
    K. Hamada, M. Nagao, M. Ajioka, F. Kawai, SiC-Emerging power device technology for next-generation electrically powered environmentally friendly vehicles. IEEE Trans. Electron Devices 62, 278–285 (2015)CrossRefGoogle Scholar
  8. 8.
    R.W. Johnson, J.L. Evans, P. Jacobsen, J.R. Thompson, M. Christopher, The changing automotive environment: high-temperature electronics. IEEE Trans. Electron. Packag. Manuf. 27, 164–176 (2004)CrossRefGoogle Scholar
  9. 9.
    B. Hu, J.O. Gonzalez, L. Ran, H. Ren, Z. Zeng, W. Lai, B. Gao, O. Alatise, H. Lu, C. Bailey, P. Mawby, Failure and reliability analysis of a SiC power module based on stress comparison to a Si device. IEEE Trans. Device Mater. Reliab. 17, 727–737 (2017)CrossRefGoogle Scholar
  10. 10.
    P.O. Quintero, F.P. McCluskey, Temperature cycling reliability of high-temperature lead-free die-attach technologies. IEEE Trans. Device Mater. Reliab. 11, 531–539 (2011)CrossRefGoogle Scholar
  11. 11.
    M. Bouarroudj, Z. Khatir, J.P. Ousten, S. Lefebvre, Temperature-level effect on solder lifetime during thermal cycling of power module. IEEE Trans. Device Mater. Reliab. 8, 471–477 (2008)CrossRefGoogle Scholar
  12. 12.
    R. Khazaka, L. Mendizabal, D. Henry, R. Hanna, Survey of high-temperature reliability of power electronics packaging components. IEEE Trans. Power Electron. 30, 2456–2464 (2015)CrossRefGoogle Scholar
  13. 13.
    K. Suganuma, S. Sakamoto, N. Kagami, D. Wakuda, K.S. Kim, M. Nogi, Low-temperature low-pressure die attach with hybrid silver particle paste. Microelectron. Reliab. 52, 375–380 (2012)CrossRefGoogle Scholar
  14. 14.
    Y. Gao, H. Zhang, W. Li, J. Jiu, S. Nagao, T. Sugahara, K. Suganuma, Die bonding performance using bimodal Cu particle paste under different sintering atmospheres. J. Electron. Mater. 46, 4575–4581 (2017)CrossRefGoogle Scholar
  15. 15.
    H. Zhang, W. Li, Y. Gao, H. Zhang, J. Jiu, K. Suganuma, Enhancing low-temperature and pressureless sintering of micron silver paste based on an ether-type solvent. J. Electron. Mater. 46, 5201–5208 (2017)CrossRefGoogle Scholar
  16. 16.
    S.A. Paknejad, G. Dumas, G. West, G. Lewis, S.H. Mannan, Microstructure evolution during 300 °C storage of sintered Ag nanoparticles on Ag and Au substrates. J. Alloy. Compd. 617, 994–1001 (2014)CrossRefGoogle Scholar
  17. 17.
    K.S. Siow, Mechanical properties of nano-silver joints as die attach materials. J. Alloy. Compd. 514, 6–19 (2012)CrossRefGoogle Scholar
  18. 18.
    F. Yu, J. Cui, Z. Zhou, K. Fang, R.W. Johnson, M.C. Hamilton, Reliability of Ag sintering for power semiconductor die attach in high-temperature applications. IEEE Trans. Power Electron. 32, 7083–7095 (2017)CrossRefGoogle Scholar
  19. 19.
    Y. Yao, G.Q. Lu, D. Boroyevich, K.D.T. Ngo, Survey of high-temperature polymeric encapsulants for power electronics packaging. IEEE Trans. Compon. Packag. Manuf. Technol. 5, 168–181 (2015)CrossRefGoogle Scholar
  20. 20.
    Y. Yan, X. Shi, J. Liu, T. Zhao, Y. Yu, Thermosetting resin system based on novolakand bismaleimide for resin-transfer molding. J. Appl. Polym. Sci. 83, 1651–1657 (2002)CrossRefGoogle Scholar
  21. 21.
    T. Fan, H. Zhang, P. Shang, C. Li, C. Chen, J. Wang, Z. Liu, H. Zhang, K. Suganuma, Effect of electroplated Au layer on bonding performance of Ag pastes. J. Alloy. Compd. 731, 1280–1287 (2018)CrossRefGoogle Scholar
  22. 22.
    C. Chen, K. Suganuma, T. Iwashige, K. Sugiura, K. Tsuruta, High-temperature reliability of sintered microporous Ag on electroplated Ag, Au, and sputtered Ag metallization substrates. J. Mater. Sci.: Mater. Electron. 29, 1785–1797 (2018)Google Scholar
  23. 23.
    F. Iacona, M. Garilli, G. Marietta, O. Puglisi, S. Pignataro, Interfacial reactions in polyimide/metal systems. J. Mater. Res. 6, 861–870 (1991)CrossRefGoogle Scholar
  24. 24.
    H. Matsumura, K. Kamada, N. Tanoue, M. Atsuta, Effect of thione primers on bonding of noble metal alloys with an adhesive resin. J. Dent. 28, 287–293 (2000)CrossRefGoogle Scholar
  25. 25.
    K. Harikrishnan, S. John, K.N. Srinivasan, J. Praveen, M. Ganesan, P.M. Kavimani, An overall aspect of electroless Ni-P depositions-a review article. Metall. Mater. Trans. A 37, 1917–1925 (2006)CrossRefGoogle Scholar
  26. 26.
    K. Suganuma, S. Kim, K. Kim, High-temperature lead-free solders: properties and possibilities. J. Min. Met. Mater. Soc. 61, 64–71 (2009)CrossRefGoogle Scholar
  27. 27.
    C.W. Chu, P.D. Murphy, Adhesion of polyimides to alumina without coupling agents. J. Adhes. Sci. Technol. 6, 1119–1135 (1992)CrossRefGoogle Scholar
  28. 28.
    L.P. Buchwalter, Adhesion of polyimides to metal and ceramic surfaces: an overview. J. Adhes. Sci. Technol. 4, 697–721 (1990)CrossRefGoogle Scholar
  29. 29.
    A. Herrera-Gomez, M. Bravo-Sanchez, O. Ceballos-Sanchez, M.O. Vazquez-Lepe, Practical methods for background subtraction in photoemission spectra. Surf. Interface Anal. 46, 897–905 (2014)CrossRefGoogle Scholar
  30. 30.
    M.F. Koenig, J.T. Grant, Comparison of factor analysis and curve-fitting for data analysis in XPS. J. Electron Spectros. Relat. Phenomena 41, 145–156 (1986)CrossRefGoogle Scholar
  31. 31.
    Q. Xu, Y. Mei, X. Li, G.Q. Lu, Correlation between interfacial microstructure and bonding strength of sintered nanosilver on ENIG and electroplated NiAu direct-bond-copper (DBC) substrates. J. Alloy. Compd. 675, 317–324 (2016)CrossRefGoogle Scholar
  32. 32.
    K. Sugiura, T. Iwashige, K. Tsuruta, C. Chen, S. Nagao, T. Sugahara, K. Suganuma, Thermal stability improvement of sintered Ag die-attach materials by addition of transition metal compound particles. Appl. Phys. Lett. 114, 161903 (2019)CrossRefGoogle Scholar
  33. 33.
    C. Chen, C. Choe, Z. Zhang, D. Kim, K. Suganuma, Low-stress design of bonding structure and its thermal shock performance (− 50 to 250°C) in SiC/DBC power die-attached modules. J. Mater. Sci.: Mater. Electron. 29, 14335–14346 (2018)Google Scholar
  34. 34.
    N.S. McIntyre, M.G. Cook, X-ray photoelectron studies on some oxides and hydroxides of cobalts, nickel, and copper. Anal. Chem. 47, 2208–2213 (1975)CrossRefGoogle Scholar
  35. 35.
    M.C. Biesinger, B.P. Payne, A.P. Grosvenor, L.W.M. Lau, A.R. Gerson, R.S.C. Smart, Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Cr, Mn, Fe, Co and Ni. Appl. Surf. Sci. 257, 2717–2730 (2011)CrossRefGoogle Scholar
  36. 36.
    M. Katoh, Y. Takeda, Chemical state analysis of tungsten and tungsten oxides using an electron probe microanalyzer. Jpn. J. Appl. Phys. 43, 7292–7295 (2004)CrossRefGoogle Scholar
  37. 37.
    O.Y. Khyzhun, XPS, XES and XAS studies of the electronic structure of tungsten oxides. J. Alloy. Compd. 305, 1–6 (2000)CrossRefGoogle Scholar
  38. 38.
    R.W. Powell, C.Y. Ho, P.E. Liley, Thermal conductivity of the elements. J. Phys. Chem. Ref. Data 3, 279–421 (1972)Google Scholar
  39. 39.
    B.C. Wadell, Transmission line design handbook (Artech House, Boston, 1991), p. 383Google Scholar
  40. 40.
    E.U. Condon, H. Odishaw, Handbook of Physics (McGraw Hill, New York, 1958)Google Scholar
  41. 41.
    T. Decorps, P.H. Haumesser, S. Olivier, A. Roule, M. Joulaud, O. Pollet, X. Avale, G. Passemard, Electroless deposition of CoWP: material characterization and process optimization on 300 mm wafers. Microelectron. Eng. 83, 2082–2087 (2006)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Tomohito Iwashige
    • 1
    • 4
    Email author
  • Takeshi Endo
    • 1
  • Kazuhiko Sugiura
    • 1
  • Kazuhiro Tsuruta
    • 1
  • Yuichi Sakuma
    • 2
  • Seigo Kurosaka
    • 3
  • Yukinori Oda
    • 3
  • Chuantong Chen
    • 4
  • Shijo Nagao
    • 4
  • Katsuaki Suganuma
    • 4
  1. 1.Electronics Research and Innovation DivisionDenso CorporationNisshinJapan
  2. 2.Technical Support GroupC. Uyemura & Co., LtdNagoyaJapan
  3. 3.Central Research LaboratoryC. Uyemura & Co., LtdHirakataJapan
  4. 4.Institute of Scientific and Industrial ResearchOsaka UniversityIbarakiJapan

Personalised recommendations