Advertisement

Optimization of absorber layer for band gap energy moderation of nanostructured SnS thin films

  • Mohsen cheraghizade
  • Farid Jamali-SheiniEmail author
  • Pejman Shabani
Article
  • 60 Downloads

Abstract

In the present work, band gap energy moderated nanostructured Sn1−xZnxS thin film solar cell devices are investigated in details in order to optimize the number of their layers, which can enhance their efficiency. Sn1−xZnxS nanostructures were synthesized by simple and cost-effective co-precipitation method and were primarily characterized for the study of their structural and phase purification as well as morphological and optical properties. Structural results confirmed the formation of polycrystalline orthorhombic and hexagonal phase of SnS and ZnS nanostructures, respectively. Morphological studies showed that increasing the Zn concentrations changed the morphology of samples from the rod- to spherical- and hexagonal-like particles. Electrical characterization also presented the highest carrier concentration and conductivity conversion in the Sn1/2Zn1/2S sample. Photovoltaic devices were deposited using the ethyl cellulose as a green binder on the transparent substrates and TiO2 buffer layers. Photovoltaic characterization showed that a sample moderated from low-to-high values of band gap energy and with four layers has better efficiency (3.17%) because of factors such as having a wide broadband range of band gap energy in absorber layer, increase in carrier lifetimes, presence of minor carriers in output current, and an increase in carrier concentration of the moderated layers. This paper also investigates and compares our results with the literature and gives some suggestions for coping with the problems involved in having a high number of layers in the fabricated devices.

Notes

Acknowledgments

Farid Jamali-Sheini and Mohsen Cheraghizade expressed gratefully acknowledge from National Iranian South Oil Company for financial support of this research (Grant No. 97-dk-1317). Farid Jamali-Sheini also gratefully acknowledges Islamic Azad University, Ahvaz Branch and Advanced Surface Engineering and Nano Materials Research Center of Islamic Azad University, Ahvaz Branch, Ahvaz, Iran for financial and instrumental support of this research, respectively. Mohsen Cheraghizade also expressed gratefully acknowledge from the presidency of the Islamic Republic of Iran, National Elites Foundation (Tehran and Khuzestan branches).

References

  1. 1.
    K. Ramya, K.T.R. Reddy, Int. J. Energy Res. 42, 5 (2018)Google Scholar
  2. 2.
    T.R. Rana, S. Kim, J. Kim, Curr. Appl. Phys. 18, 6 (2018)CrossRefGoogle Scholar
  3. 3.
    Y. Gupta, C. Ravikant, A. Palakkandy, Glob. Chall. 2, 7 (2018)Google Scholar
  4. 4.
    S.S. Hegde, A.G. Kunjomana, P. Murahari, B.K. Prasad, K. Ramesh, Surf. Interfaces 10, 78–84 (2018)CrossRefGoogle Scholar
  5. 5.
    M. Cheraghizade, F. Jamali-Sheini, R. Yousefi, F. Niknia, M.R. Mahmoudian, M. Sookhakian, Mater. Chem. Phys. 195, 187–194 (2017)CrossRefGoogle Scholar
  6. 6.
    K.T. Ramakrishna Reddy, N. Koteswara Reddy, R.W. Miles, Sol. Energy Mater. Sol. Cells 90(18–19), 3041–3046 (2006)CrossRefGoogle Scholar
  7. 7.
    I. Masaya, T. Hiroshi, Jpn. J. Appl. Phys. 47, 10R (2008)Google Scholar
  8. 8.
    Y. Wang, H. Gong, B. Fan, G. Hu, J. Phys. Chem. C 114, 7 (2010)Google Scholar
  9. 9.
    H. Park Helen, R. Heasley, L. Sun et al., Prog. Photovoltaics Res. Appl. 23(7), 901–908 (2015)CrossRefGoogle Scholar
  10. 10.
    P. Sinsermsuksakul, L. Sun, W. Lee Sang et al., Adv. Energy Mater. 4(15), 1400496 (2014)CrossRefGoogle Scholar
  11. 11.
    J.A. Andrade-Arvizu, M. Courel-Piedrahita, O. Vigil-Galán, J. Mater. Sci. 26, 7 (2015)Google Scholar
  12. 12.
    H.H. Park, A. Jayaraman, R. Heasley et al., Appl. Phys. Lett. 105, 20 (2014)Google Scholar
  13. 13.
    F. Tahvilzadeh, N. Rezaie, Opt. Quantum Electron. 48, 2 (2016)CrossRefGoogle Scholar
  14. 14.
    N. Rezaie, A. Kosarian, Opt. Quant. Electron. 47, 10 (2015)CrossRefGoogle Scholar
  15. 15.
    A. Morales-Acevedo, Sol. Energy 83, 9 (2009)Google Scholar
  16. 16.
    A. Morales-Acevedo, Energy Procedia 2, 1 (2010)CrossRefGoogle Scholar
  17. 17.
    B. Subramanian, C. Sanjeeviraja, M. Jayachandran, Mater. Chem. Phys. 71, 1 (2001)CrossRefGoogle Scholar
  18. 18.
    G. Biswajit, D. Madhumita, B. Pushan, D. Subrata, Semicond. Sci. Technol. 24, 2 (2009)Google Scholar
  19. 19.
    A.R. Garcia-Angelmo, R. Romano-Trujillo, J. Campos-Álvarez, O. Gomez-Daza, M.T.S. Nair, P.K. Nair, Phys. Status Solidi (A) 212, 10 (2015)CrossRefGoogle Scholar
  20. 20.
    A. Yago, S. Sasagawa, Y. Akaki et al., Phys. Status Solidi C 14, 6 (2017)Google Scholar
  21. 21.
    V. Steinmann, R. Jaramillo, K. Hartman et al., Adv. Mater. 26, 44 (2014)CrossRefGoogle Scholar
  22. 22.
    M. Cheraghizade, F. Jamali-Sheini, P. Shabani, Mater. Sci. Semicond. Process. 90, 120–128 (2019)CrossRefGoogle Scholar
  23. 23.
    P.D.F. Icdd, Powder Diffraction File (Newtown Square, Pennsylvania, USA, 1997)Google Scholar
  24. 24.
    F. Jamali-Sheini, M. Cheraghizade, F. Niknia, R. Yousefi, MRS Commun. 6, 4 (2016)CrossRefGoogle Scholar
  25. 25.
    M. Wang, J. Zhao, R. Xu, N. Fu, X. Wang, J. Alloys Compd. 674, 353–359 (2016)CrossRefGoogle Scholar
  26. 26.
    S.N. Basahel, T.T. Ali, K. Narasimharao, A.A. Bagabas, M. Mokhtar, Mater. Res. Bull. 47, 11 (2012)CrossRefGoogle Scholar
  27. 27.
    B. Ghanbari, F. Jamali-Sheini, R. Yousefi, J. Mater. Sci. 29, 13 (2018)Google Scholar
  28. 28.
    A.K. Singh, G.S. Thool, S.R. Deo, R.S. Singh, A. Gupta, Res. Chem. Intermed. 38, 8 (2012)Google Scholar
  29. 29.
    M. Cheraghizade, F. Jamali-Sheini, R. Yousefi, Appl. Phys. A 123, 6 (2017)CrossRefGoogle Scholar
  30. 30.
    F. Jamali-Sheini, R. Yousefi, N. Ali Bakr, M. Cheraghizade, M. Sookhakian, N.M. Huang, Mater. Sci. Semicond. Process. 32, 172–178 (2015)CrossRefGoogle Scholar
  31. 31.
    M. Cheraghizade, R. Yousefi, F. Jamali-Sheini, A. Saáedi, N. Ming Huang, Mater. Sci. Semicond. Process. 21, 98–103 (2014)CrossRefGoogle Scholar
  32. 32.
    A.A. Yadav, E.U. Masumdar, Sol. Energy 84, 8 (2010)Google Scholar
  33. 33.
    A.A. Yadav, E.U. Masumdar, J. Alloy. Compd. 505, 2 (2010)CrossRefGoogle Scholar
  34. 34.
    N. Muthukumarasamy, S. Jayakumar, M.D. Kannan, R. Balasundaraprabhu, Sol. Energy 83, 4 (2009)CrossRefGoogle Scholar
  35. 35.
    G.S. Shahane, B.M. More, C.B. Rotti, L.P. Deshmukh, Mater. Chem. Phys. 47, 2 (1997)CrossRefGoogle Scholar
  36. 36.
    L.P. Deshmukh, B.M. More, C.B. Rotti, G.S. Shahane, Mater. Chem. Phys. 45, 2 (1996)CrossRefGoogle Scholar
  37. 37.
    D.S. Sutrave, G.S. Shahane, V.B. Patil, L.P. Deshmukh, Mater. Chem. Phys. 65, 3 (2000)CrossRefGoogle Scholar
  38. 38.
    Y. Wang, P.D. Townsend, J. Phys. 398, 1 (2012)Google Scholar
  39. 39.
    F. Jamali-Sheini, M. Cheraghizade, R. Yousefi, Solid State Sci. 79, 30–37 (2018)CrossRefGoogle Scholar
  40. 40.
    F. Jamali‐Sheini, F. Niknia, M. Cheraghizade, R. Yousefi, R. Mahmoudian Mohammad, ChemElectroChem 4(6), 1478–1486 (2017)CrossRefGoogle Scholar
  41. 41.
    R. Kripal, A.K. Gupta, S.K. Mishra, R.K. Srivastava, A.C. Pandey, S.G. Prakash, Spectrochim. Acta Part A 76, 5 (2010)Google Scholar
  42. 42.
    M. Mall, L. Kumar, J. Lumin. 130, 4 (2010)CrossRefGoogle Scholar
  43. 43.
    M. Devika, N. Koteeswara Reddy, M. Prashantha et al., phys. Status solidi (A) 207(8), 1864–1869 (2010)CrossRefGoogle Scholar
  44. 44.
    P. Prathap, N. Revathi, Y.P.V. Subbaiah, K.T. Ramakrishna Reddy, R.W. Miles, Solid State Sci. 11(1), 224–232 (2009)CrossRefGoogle Scholar
  45. 45.
    F. Jamali-Sheini, M. Cheraghizade, R. Yousefi, Sol. Energy Mater. Solar Cells 154, 49–56 (2016)CrossRefGoogle Scholar
  46. 46.
    F. Monjezi, F. Jamali-Sheini, R. Yousefi, Sol. Energy 171, 508–518 (2018)CrossRefGoogle Scholar
  47. 47.
    F. Jamali-Sheini, M. Cheraghizade, R. Yousefi, Appl. Surf. Sci. (2018).  https://doi.org/10.1016/j.apsusc.2018.03.011 Google Scholar
  48. 48.
    A. Eskandari, F. Jamali-Sheini, M. Cheraghizade, R. Yousefi, Appl. Nanosci. 8, 5 (2018)CrossRefGoogle Scholar
  49. 49.
    A. Morales-Acevedo, Sol. Energy Mater. Sol. Cells 95, 10 (2011)CrossRefGoogle Scholar
  50. 50.
    S.S. Hegde, A.G. Kunjomana, M. Prashantha, C. Kumar, K. Ramesh, Thin Solid Films (2013).  https://doi.org/10.1016/j.tsf.2013.08.078 Google Scholar
  51. 51.
    M.M. Tavakoli, M.H. Mirfasih, S. Hasanzadeh, H. Aashuri, A. Simchi, Phys. Chem. Chem. Phys. 18, 17 (2016)CrossRefGoogle Scholar
  52. 52.
    Y. Shi, C. Zhu, L. Wang et al., Chem. Mater. 25, 6 (2013)CrossRefGoogle Scholar
  53. 53.
    T.-L. Li, Y.-L. Lee, H. Teng, Energy Environ. Sci. 5, 1 (2012)Google Scholar
  54. 54.
    G. Yue, Y. Lin, X. Wen, L. Wang, D. Peng, J. Mater. Chem. 22, 32 (2012)Google Scholar
  55. 55.
    S. Gedi, V.R. Minna Reddy, B. Pejjai, C.W. Jeon, C. Park, R.R. KT, Appl. Surf. Sci. 372, 116–124 (2016)CrossRefGoogle Scholar
  56. 56.
    L. Zhu, L. Wang, F. Xue et al., Adv. Sci. 4, 1 (2016)Google Scholar
  57. 57.
    A.M.S. Arulanantham, S. Valanarasu, K. Jeyadheepan, V. Ganesh, M. Shkir, J. Mol. Struct. (2018).  https://doi.org/10.1016/j.molstruc.2017.09.077 Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Mohsen cheraghizade
    • 1
  • Farid Jamali-Sheini
    • 2
    Email author
  • Pejman Shabani
    • 1
  1. 1.Department of Electrical Engineering, Mahshahr BranchIslamic Azad UniversityMahshahrIran
  2. 2.Advanced Surface Engineering and Nano Materials Research Center, Department of Physics, Ahvaz BranchIslamic Azad UniversityAhvazIran

Personalised recommendations