A study based on MgAl2O4–LaCrO3 composite ceramics for high temperature NTC thermistors

  • Along Ga
  • Xinglian Yin
  • Qing ZhaoEmail author
  • Donglin He
  • Yan Zhao
  • Aimin ChangEmail author


The effects of the sintering process on the microstructure and high temperature electrical properties of xMgAl2O4–(1 − x)LaCrO3 (x = 0.3, 0.4, 0.5) composite ceramics were investigated. X-ray diffraction (XRD) results show that all the composite ceramic samples are composed of the spinel oxide MgAl2O4 phase and orthogonal perovskite structure LaCrO3 phase, and no impurities appear. The grain size of the vacuum sintered ceramic is smaller, resulting in an increase in electrical resistance. X-ray photoelectron spectroscopy confirmed the presence of Cr3+ and Cr 4+ ions at the lattice sites. The EDS results show that the vacuum sintered ceramic has more Cr content due to the smaller oxygen partial pressure during vacuum sintering. The activation energy of the vacuum sintered sample is higher than the activation energy of the conventional sintered sample. All the composite ceramic samples have negative temperature coefficient characteristics and the resistivity increases with the increase of MgAl2O4 content.



This study was supported by the National Natural Science Foundation of China (Grant No. 61671447), Tianshan Talent Project of Xinjiang Autonomous Region and the Scientific and Technological Talents Training Project of the Xinjiang Autonomous Region (Grant No. QN2016YX0161).


  1. 1.
    H. Yokokawa, N. Sakai, T. Kawada, M. Kokiya, J. Electron. Soc. 138, 1018 (1991)CrossRefGoogle Scholar
  2. 2.
    O.I. Klyushnikov, V.V. Sal’nikov, N.M. Bogdanovich, J. Inorg. Mater. 38, 265 (2002)CrossRefGoogle Scholar
  3. 3.
    T. Tachiwaki, Y. Kunifusa, M. Yoshinaka, K. Hirota, O. Yamaguchi, Mater. Sci. Eng. B 86, 255 (2001)CrossRefGoogle Scholar
  4. 4.
    A. Feltz, J. Eur. Ceram. Soc. 20, 2367 (2000)CrossRefGoogle Scholar
  5. 5.
    D. Houivet, J. Bernard, J.-M. Haussonne, J. Eur. Ceram. Soc. 24, 1237 (2004)CrossRefGoogle Scholar
  6. 6.
    Y. Jiang, J. Gao, M. Liu, Y. Wang, G. Meng, Mater. Lett. 61, 1908 (2007)CrossRefGoogle Scholar
  7. 7.
    I.-H. Jung, S. Decterov, A.D. Pelton, J. Am. Ceram. Soc. 88, 1921 (2005)CrossRefGoogle Scholar
  8. 8.
    A.N. Kamlo, J. Bernard, C. Lelievre, D. Houivet, J. Eur. Ceram. Soc. 31, 1457 (2011)CrossRefGoogle Scholar
  9. 9.
    A. Kumar, M.L. Singla, A. Kumar, J.K. Rajput, J. Mater. Sci.: Mater. Electron. 26, 1838 (2014)Google Scholar
  10. 10.
    Y. Luo, X. Liu, X. Li, J. Mater. Sci.: Mater. Electron. 17, 909 (2006)Google Scholar
  11. 11.
    J. Park, Ceram. Int. 41, 6386 (2015)CrossRefGoogle Scholar
  12. 12.
    K. Park, J.K. Lee, J. Alloys Compd. 475, 513 (2009)CrossRefGoogle Scholar
  13. 13.
    K. Park, J.K. Lee, S.J. Kim, W.S. Seo, W.S. Cho, C.W. Lee, S. Nahm, J. Alloys Compd. 467, 310 (2009)CrossRefGoogle Scholar
  14. 14.
    K. Park, S.J. Yun, Mater. Lett. 58, 933 (2004)CrossRefGoogle Scholar
  15. 15.
    B. Zhang, Q. Zhao, A. Chang, Y. Li, Y. Liu, Y. Wu, J. Eur. Ceram. Soc. 34, 2989 (2014)CrossRefGoogle Scholar
  16. 16.
    B. Zhang, Q. Zhao, C. Zhao, A. Chang, J. Alloys Compd. 698, 1 (2017)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Key Laboratory of Functional Materials and Devices for Special Environments of CAS; Xinjiang Key Laboratory of Electronic Information Materials and DevicesXinjiang Technical Institute of Physics & Chemistry of CASUrumqiChina
  2. 2.University of Chinese Academy of SciencesBeijingChina

Personalised recommendations