Precise control the microstructural, optical, photocatalytic, and photoelectrochemical properties of TiO2 nanoarrays through changing with growth substrate via hydrothermal method

  • Xishun JiangEmail author
  • Wenjun He
  • Shaokang Zheng
  • Yonghua Shi
  • Zhaoqi Sun


A series of TiO2 nanostructures with rutile phase were synthesized on arbitrary substrates of conductive transparent fluorine-doped tin oxide (FTO), tin-doped indium oxide (ITO), and glass at the low temperature of 150 °C by the hydrothermal method. The samples were characterized by XRD, SEM, TEM, XPS, UV–Vis absorption, and micro-Raman spectroscopy. The effects of growth substrates on the morphologies and optical properties of nanostructures were investigated. TiO2 nanorods were grown on the FTO substrate, while TiO2 nanoflowers were grown on the ITO and glass substrates, and the growth mechanism for these different nanostructures is discussed in detail. The results show that the TiO2 nanorods can improve photocatalytic properties and photoelctrochemical (PEC) performance for its unique structure and optical properties. The TiO2 nanorods exhibited a maximal photocatalytic rate of 4.42 min−1 and photocurrent density of 0.049 mA/cm2, which is about 1.52 and 3.03 times higher than those of TiO2 nanoflowers grown on the ITO substrates, respectively. These findings are quite promising and encouraging for the use of TiO2 nanoarrays in photocatalysis and energy applications.



This work is supported by the National Natural Science Foundation of China (No. 51772003), Anhui Provincial Natural Science Foundation (1608085ME95), the State Key Laboratory of Metastable Materials Science and Technology, China (2018014), the Anhui University Provincial Natural Science Research Project, China (KJ2016A524 and KJ2017B04), the Higher Education Excellent Youth Talents Foundation of Anhui Province (gxyqZD2016328), and the Research Project of Chuzhou University (2017qd06).


  1. 1.
    J. Karch, R. Birriger, H. Gleiter, Nature 10, 556 (1987)CrossRefGoogle Scholar
  2. 2.
    M.R. Hoffmann, S.T. Martin, W. Choi, D.W. Bahnemann, Chem. Rev. 95, 69 (1995)CrossRefGoogle Scholar
  3. 3.
    W.L. Yu, D.F. Xu, T.Y. Peng, J. Mater. Chem. A 3, 19936 (2015)CrossRefGoogle Scholar
  4. 4.
    Y.N. Liu, R.X. Wang, Z.K. Yang, H. Du, Y.F. Jiang, C.C. Shen, K. Liang, A.W. Xu, Chin. J. Catal. 36, 2135 (2015)CrossRefGoogle Scholar
  5. 5.
    K.Z. Qi, B. Cheng, J.G. Yu, W. Ho, J. Alloys Compd. 727, 792 (2017)CrossRefGoogle Scholar
  6. 6.
    J.J. Kong, X.D. Lai, Z.B. Rui, H.B. Ji, S.F. Ji, Chin. J. Catal. 37, 869 (2016)CrossRefGoogle Scholar
  7. 7.
    J.Y. Liao, B.X. Lei, H.Y. Chen, D.B. Kuang, C.Y. Su, Energy Environ. Sci. 5, 5750 (2012)CrossRefGoogle Scholar
  8. 8.
    X. Zhang, V. Thavasi, S.G. Mhaisalkar, S. Ramakrishna, Nanoscale 4, 1707 (2012)CrossRefGoogle Scholar
  9. 9.
    J.M. Wu, T.W. Zhang, Y.W. Zeng, H. Satoshi, K. Tsuru, A. Osaka, Langmuir 21, 6995 (2005)CrossRefGoogle Scholar
  10. 10.
    H.L. Tan, R. Amal, Y.H. Ng, J. Mater. Chem. A 5, 16498 (2017)CrossRefGoogle Scholar
  11. 11.
    X.Y. Wang, Y. Liu, X. Zhou, B.J. Li, H. Wang, W.X. Zhao, H. Huang, C.L. Liang, J. Mater. Chem. 22, 17531 (2012)CrossRefGoogle Scholar
  12. 12.
    X. Feng, K. Shankar, O.K. Varghese, M. Paulose, T.J. Latempa, C.A. Grimes, Nano Lett. 8, 3781 (2008)CrossRefGoogle Scholar
  13. 13.
    Y.B. Mao, S.S. Wong, J. Am. Chem. Soc. 128, 8217 (2006)CrossRefGoogle Scholar
  14. 14.
    J. Zhang, X. Tang, D. Li, J. Phys. Chem. C 115, 21529 (2011)CrossRefGoogle Scholar
  15. 15.
    H. Huang, L. Pan, C.K. Lim, H. Gong, J. Guo, M.S. Tse, O.K. Tan, Small 9, 3153 (2013)CrossRefGoogle Scholar
  16. 16.
    G.T. Delgado, C.I.Z. Romero, S.A.M. Hernández, R.C. Pérez, O.Z. Angel, Sol. Energy Mater. Sol. Cells 93, 55 (2009)CrossRefGoogle Scholar
  17. 17.
    C.L. Cao, C.J. Hu, W.D. Shen, S.X. Wang, Y.S. Tian, X. Wang, J. Alloy. Compd. 523, 139 (2012)CrossRefGoogle Scholar
  18. 18.
    C. Chen, M.D. Ye, M.Q. Lv, C. Gong, W.X. Guo, C.J. Lin, Electrochim. Acta 121, 175 (2014)CrossRefGoogle Scholar
  19. 19.
    B.H. Kim, J.W. Kwon, Sci. Rep. 4, 4379 (2014)CrossRefGoogle Scholar
  20. 20.
    Z.H. Fan, F.M. Meng, J.F. Gong, H.J. Li, A.X. Li, Ceram. Int. 42, 6282 (2016)CrossRefGoogle Scholar
  21. 21.
    M. Chen, X. Wang, Y.H. Yu, Z.I. Pei, X.D. Bai, C. Sun, R.F. Huang, L.S. Wen, J. Appl. Surf. Sci. 158, 134 (2000)CrossRefGoogle Scholar
  22. 22.
    H. Zhou, Y.R. Zhang, J. Phys. Chem. C 118, 5626 (2014)CrossRefGoogle Scholar
  23. 23.
    J.M. Wu, B. Qi, J. Am. Chem. Soc. 91, 3961 (2008)Google Scholar
  24. 24.
    L.S. Zhong, J.S. Hu, H.P. Liang, A.M. Cao, W.G. Song, L.J. Wang, Adv. Mater. 18, 2426 (2006)CrossRefGoogle Scholar
  25. 25.
    F. Zhu, H. Dong, Y. Wang, D.P. Wu, J.M. Li, J.L. Pan, Q. Li, X.C. Ai, J.P. Zhang, D.S. Xu, Phys. Chem. Chem. Phys. 15, 17798 (2013)CrossRefGoogle Scholar
  26. 26.
    M. Rajabi, S. Shogh, A. Irajizad, J. Lumin. 157, 235 (2015)CrossRefGoogle Scholar
  27. 27.
    J.L. Xie, Y.F. Yang, H.P. He, D. Cheng, M.M. Mao, Q.X. Jiang, L.X. Song, J.M. Xiong, Appl. Surf. Sci. 355, 921 (2015)CrossRefGoogle Scholar
  28. 28.
    E.Z. Liu, L.L. Qi, J.J. Bian, Y.H. Chen, X.Y. Hu, J. Fan, H.C. Liu, C.J. Zhu, Q.P. Wang, Mater. Bull. Res. 68, 203 (2015)CrossRefGoogle Scholar
  29. 29.
    G.H. Liu, M. Zhang, D.Z. Zhang, X.H. Gu, F.X. Meng, S.P. Wen, Y. Chen, S.P. Ruan, Appl. Surf. Sci. 315, 55 (2014)CrossRefGoogle Scholar
  30. 30.
    F. Zhang, K. Saito, T. Tanaka, M. Nishio, M. Arita, Q.I. Guo, Appl. Phys. Lett. 105, 162107 (2014)CrossRefGoogle Scholar
  31. 31.
    H. Cai, P.P. Liang, R. Hubner, S.Q. Zhou, Y.L. Li, J. Sun, N. Xu, J.D. Wu, J. Mater. Chem. C 3, 5307 (2015)CrossRefGoogle Scholar
  32. 32.
    H. Frenzel, A. Lajn, H.V. Wenckstern, M. Lorenz, F. Schein, Z. Zhang, M. Grundmann, Adv. Mater. 22, 5332 (2010)CrossRefGoogle Scholar
  33. 33.
    M. Abd-Lefdil, R. Diaz, H. Bihri, M. Ait Aouaj, F. Rueda, Eur. Phys. J. Appl. Phys. 38, 217 (2007)CrossRefGoogle Scholar
  34. 34.
    C. Howard, T. Sabine, F. Dickson, Acta Crystallogr. B 47, 462 (1991)CrossRefGoogle Scholar
  35. 35.
    B. Liu, E.S. Aydil, J. Am. Chem. Soc. 131, 3985 (2009)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Mechanical and Electronic EngineeringChuzhou UniversityChuzhouChina
  2. 2.State Key Laboratory of Metastable Materials Science and TechnologyYanshan UniversityQinhuangdaoChina
  3. 3.College of Materials Science and EngineeringXi’an Shiyou UniversityXi’anChina

Personalised recommendations