Molten salt assisted growth of lead-free BCZT crystals: effects of synthesis conditions and sintering on structural and electrical properties

  • K. Jai Shree
  • Dibakar DasEmail author


An attempt of preparing lead free [(Ba0.85Ca0.15)(Zr0.1Ti0.9)O3] (BCZT) crystals by molten salt synthesis (MSS) method and the influence of MSS process parameters on the morphology, phase structure, dielectric and ferroelectric properties of BCZT ceramic have been reported in this investigation. A reduction in reaction temperature of 350 °C (1000 °C/4 h in MSS method versus 1350 °C/4 h in conventional solid state method) has been achieved in MSS method. Among various alkali metal salts NaCl–KCl salt mixture has been found most effective in producing phase pure and anisotropic platelet like BCZT crystals. Powder X-ray diffraction pattern and Raman spectra of the BCZT crystals confirm the room temperature tetragonal structure of the BCZT ceramic. Finally, BCZT template prepared by alkali metal salts (Na2SO4, NaCl, KCl, NaCl–KCl and NaBr) at 1000 °C/4 h were compacted and sintered at 1450 °C/2 h to achieve pellets with good sintered densities. The crystal structure, microstructural and electrical properties were compared with randomly-oriented BCZT ceramics prepared by conventional solid-state synthesis method, and the results are presented in this paper.



Jai Shree K likes to acknowledge the financial support received from University Grants Commission (UGC) for providing National Fellowship for Students of Other Backward Classes (NFOBC). The support received from DST Purse, UPE grants and the School of Engineering Sciences and Technology (SEST) at University of Hyderabad for consumable, contingencies and infrastructural supports are gratefully acknowledged.


  1. 1.
    B. Jaffe, W.R. Cook Jr., H. Jaffe, Piezoelectric Ceramics (Academic Press, London, 1971)Google Scholar
  2. 2.
    F. Levassort, P. Tran-Huu-Hue, E. Ringaard, M. Lethiecq, J. Eur. Ceram. Soc. 21, 1361–1370 (2001)CrossRefGoogle Scholar
  3. 3.
    T. Takenaka, K.I. Mareyama, K. Sakata, Jpn. J. Appl. Phys. 30(9B), 2236–2239 (1991)CrossRefGoogle Scholar
  4. 4.
    T.B. Wang, L.E. Wang, Y.K. Lu, D.P. Zhou, J. Chin. Ceram. Soc. 14, 14 (1986)Google Scholar
  5. 5.
    R.H. Arendt, J.H. Rosolowski, J.W. Szymaszek, Mater. Res. Bull. 14, 703–709 (1979)CrossRefGoogle Scholar
  6. 6.
    T. Kimura, T. Yamaguchi, Ceramic Powders (Elsevier, Amsterdam, 1983), p. 555Google Scholar
  7. 7.
    Dan Liu, Yongke Yan, Heping Zhou, J. Am. Ceram. Soc. 90(4), 1323–1326 (2007)CrossRefGoogle Scholar
  8. 8.
    X.Y. Ding, B. Shen, J.W. Zhai, Z.K. Xu, F. Fu, J.J. Zhang, X. Yao, Ferroelectrics 401, 30–35 (2010)CrossRefGoogle Scholar
  9. 9.
    W. Satoshi, T. Kotaro, M. Tomomitsu, K. Hirofumi, T. Takaaki, K. Toshio, Jpn. J. Appl. Phys. 46, 7039–7043 (2007)CrossRefGoogle Scholar
  10. 10.
    Hu Guoxin, Xu Bei, Xiaobin Yan, Jinjing Li, Feng Gao, Zhengtang Liu, Yong Zhang, Huajun Sun, J. Mater. Sci. 25, 1817–1827 (2014)Google Scholar
  11. 11.
    G.W. Greenwood, Acta Metall. 4, 243–248 (1956)CrossRefGoogle Scholar
  12. 12.
    A.B. Haugen, G. Henning Olsen, F. Madaro, M.I. Morozov, G. Tutuncu, J.L. Jones, T. Grande, M. Einarsrud, J. Am. Ceram. Soc. 97(12), 3818–3825 (2014)CrossRefGoogle Scholar
  13. 13.
    X. Chen, Z. Peng, X. Chao, Z. Yang, Ceram. Int. 43, 11920–11928 (2017)CrossRefGoogle Scholar
  14. 14.
    A. C. Larson, R.B. Von Dreele, Los Alamos National Laboratory Report LAUR. pp. 86–748 (2000)Google Scholar
  15. 15.
    B.H. Toby, J. Appl. Cryst. 34, 210–213 (2001)CrossRefGoogle Scholar
  16. 16.
    M. DiDomenico Jr., S.H. Wemple, S.P.S. Porto, R.P. Bauman, Phys. Rev. 174, 522 (1968)CrossRefGoogle Scholar
  17. 17.
    G. Ji, X. Lin, Y. Sun, S.A.A. Trimizi, H. Su, Y. Du, CrystEngComm 13, 6451–6456 (2011)CrossRefGoogle Scholar
  18. 18.
    I.K. Jeong, J.S. Ahn, Appl. Phys. Lett. 101, 242901 (2012)CrossRefGoogle Scholar
  19. 19.
    U.R. Intatha, P.P. Parjansri, K.P. Pengpat, G.W. Rujijanagul, T.W. Tunkasiri, S.K. Eitssayeam, Int Ferroelectrics. 139, 83–91 (2012)CrossRefGoogle Scholar
  20. 20.
    S. Sarian, H.W. Weart, Trans. Metall. Soc. AIME 233, 1990 (1965)Google Scholar
  21. 21.
    B. Li, M.C. Ehmke, J.E. Blendell, K.J. Bowman, J. Eur. Ceram. Soc. 33(15–16), 3037–3044 (2013)CrossRefGoogle Scholar
  22. 22.
    S.K. Ye, J.Y.H. Fuh, L. Lu, Appl. Phys. Lett. 100, 252906 (2012)CrossRefGoogle Scholar
  23. 23.
    Z. Wang, J. Wang, X. Chao, L. Wei, B. Yang, D. Wang, Z. Yang, J. Mater. Sci. 27, 5047–5058 (2016)Google Scholar
  24. 24.
    P. Mishra, Sonia, P. Kumar, J. Alloys Compd. 545, 210–215 (2012)CrossRefGoogle Scholar
  25. 25.
    A. Srinivas, R.V. Krishnaiah, V.L. Niranjani, S.V. Kamat, T. Karthik, S. Asthana, Ceram. Int. 41, 1980–1985 (2015)CrossRefGoogle Scholar
  26. 26.
    W. Bai, B. Shen, F. Fu, J. Zhai, Mater. Lett. 83, 20–22 (2012)CrossRefGoogle Scholar
  27. 27.
    S. Ye, J. Fuh, L. Lu, Y. Chang, J.R. Yang, RSC Adv. 3, 20693–20698 (2013)CrossRefGoogle Scholar
  28. 28.
    Z.H. Zhao, X. Li, Y.-J. Dai, M.-Y. Ye, H.-M. Ji, Ceram. Int. 42, 18756–18763 (2016)CrossRefGoogle Scholar
  29. 29.
    Y. Liu, Y. Chang, F. Li, B. Yang, Y. Sun, J. Wu, S. Zhang, R. Wang, W. Cao, A.C.S. Appl, Mater. Interfaces. 9, 29863–29871 (2017)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Engineering Sciences and TechnologyUniversity of HyderabadHyderabadIndia

Personalised recommendations