Interface-induced d0 ferromagnetism in undoped ZnO thin films grown on different oriented sapphire substrates

  • Dong Wang
  • Yajuan Qiu
  • Wanjun LiEmail author
  • Hong Zhang
  • Guoping Qin
  • Haibo Ruan
  • Lijuan Ye
  • Chunyang Kong
  • Liang Fang


The origin of d0 ferromagnetism in ZnO material still remains an open question. Here, we report a systematic study of the structural, optical, Raman and magnetic properties of undoped ZnO films grown on a-, c-, m- and r-plane sapphire substrates by radio frequency magnetron sputtering at room temperature. It is found that the polarity of the substrate does not affect the preferential growth of undoped ZnO film along the c-axis, but it will obviously affect the species and concentration of intrinsic defects in films, thereby regulating the optical and Raman properties of undoped ZnO films. Magnetic measurement reveals that all undoped ZnO films exhibit clear hysteresis loops at room temperature, confirming the presence of room temperature ferromagnetism. Furthermore, the relationship between intrinsic defects and magnetic properties was discussed, which suggests that the observed ferromagnetic order has nothing to do with the internal intrinsic defects in undoped ZnO films, but is derived from the interface effects between the undoped ZnO films and the substrates.



The authors gratefully acknowledge support from the National Natural Science Foundation of China (Grant No. 51472038), the Natural Science Foundation of Chongqing (Grant Nos. cstc2016jcyjA0390, cstc2018jcyjA2923), the Science and Technology Research Project of Chongqing Education Committee (Grant No. KJ1500319), the Foundation for the Creative Research Groups of Higher Education of Chongqing (Grant No. CXTDX201601016).


  1. 1.
    T. Dietl, A ten-year perspective on dilute magnetic semiconductors and oxides. Nat. Mater. 9(12), 965 (2010)CrossRefGoogle Scholar
  2. 2.
    T. Dietl, H. Ohno, F. Matsukura et al., Zener model description of ferromagnetism in zinc-blende magnetic semiconductors. Science 287(5455), 1019–1022 (2000)CrossRefGoogle Scholar
  3. 3.
    H.J. Lee, S.Y. Jeong, C.R. Cho et al., Study of diluted magnetic semiconductor: co-doped ZnO. Appl. Phys. Lett. 81(21), 4020–4022 (2002)CrossRefGoogle Scholar
  4. 4.
    K. Sato, H. Katayama-Yoshida, Stabilization of ferromagnetic states by electron doping in Fe-, Co-or Ni-doped ZnO. Jpn. J. Appl. Phys. 40(4A), L334 (2001)CrossRefGoogle Scholar
  5. 5.
    S.J. Han, J.W. Song, C.H. Yang et al., A key to room-temperature ferromagnetism in Fe-doped ZnO: Cu. Appl. Phys. Lett. 81(22), 4212–4214 (2002)CrossRefGoogle Scholar
  6. 6.
    J.M.D. Coey, M. Venkatesan, C.B. Fitzgerald, Donor impurity band exchange in dilute ferromagnetic oxides. Nat. Mater. 4(2), 173 (2005)CrossRefGoogle Scholar
  7. 7.
    A.C. Durst, R.N. Bhatt, P.A. Wolff, Bound magnetic polaron interactions in insulating doped diluted magnetic semiconductors. Phys. Review B 65(23), 235205 (2002)CrossRefGoogle Scholar
  8. 8.
    J.M.D. Coey, K. Wongsaprom, J. Alaria et al., Charge-transfer ferromagnetism in oxide nanoparticles. J. Phys. D 41(13), 134012 (2008)CrossRefGoogle Scholar
  9. 9.
    H. Pan, J.B. Yi, L. Shen et al., Room-temperature ferromagnetism in carbon-doped ZnO. Phys. Rev. Lett. 99(12), 127201 (2007)CrossRefGoogle Scholar
  10. 10.
    P. Kumar, H.K. Malik, A. Ghosh et al., An insight to origin of ferromagnetism in ZnO and N implanted ZnO thin films: experimental and DFT approach. J. Alloy. Compd. 768, 323–328 (2018)CrossRefGoogle Scholar
  11. 11.
    S. Yılmaz, E. McGlynn, E. Bacaksız et al., Effects of Cu diffusion-doping on structural, optical, and magnetic properties of ZnO nanorod arrays grown by vapor phase transport method. J. Appl. Phys. 111(1), 013903 (2012)CrossRefGoogle Scholar
  12. 12.
    A.A. Dakhel, M. Bououdina, A. Jaafar et al., Effect of (Cd, Al) co-doping and hydrogenation on the long-range ferromagnetic ordering of ZnO: experimental and DFT studies. J. Alloy. Compd. 753, 813–820 (2018)CrossRefGoogle Scholar
  13. 13.
    V.B. Kamble, S.V. Bhat, A.M. Umarji, Investigating thermal stability of structural defects and its effect on d0 ferromagnetism in undoped SnO2. J. Appl. Phys. 113(24), 244307 (2013)CrossRefGoogle Scholar
  14. 14.
    S. Ghose, T. Rakshit, R. Ranganathan et al., Role of Zn-interstitial defect states on d0 ferromagnetism of mechanically milled ZnO nanoparticles. RSC Adv. 5(121), 99766–99774 (2015)CrossRefGoogle Scholar
  15. 15.
    X. Xu, C. Xu, G. Chen et al., Role of zinc vacancies in driving ferromagnetism in undoped ZnO granular films. EPL (Europhysics Letters) 101(2), 27009 (2013)CrossRefGoogle Scholar
  16. 16.
    K. Rainey, J. Chess, J. Eixenberger et al., Defect induced ferromagnetism in undoped ZnO nanoparticles. J. Appl. Phys. 115(17), 17D727 (2014)CrossRefGoogle Scholar
  17. 17.
    M. Khalid, M. Ziese, A. Setzer et al., Defect-induced magnetic order in pure ZnO films. Phys. Review B 80(3), 035331 (2009)CrossRefGoogle Scholar
  18. 18.
    P. Zhan, W. Wang, C. Liu et al., Oxygen vacancy—induced ferromagnetism in un-doped ZnO thin films. J. Appl. Phys. 111(3), 033501 (2012)CrossRefGoogle Scholar
  19. 19.
    S. Yılmaz, S. Garry, E. McGlynn et al., Synthesis and characterization of Mn-doped ZnO nanorods grown in an ordered periodic honeycomb pattern using nanosphere lithography. Ceram. Int. 40(6), 7753–7759 (2014)CrossRefGoogle Scholar
  20. 20.
    T.S. Herng, S.P. Lau, S.F. Yu et al., Zn-interstitial-enhanced ferromagnetism in Cu-doped ZnO films. J. Magn. Magn. Mater. 315(2), 107–110 (2007)CrossRefGoogle Scholar
  21. 21.
    H. You, J. Yang, J.Y. Zhu et al., Oxygen interstitials enhanced room temperature ferromagnetism in undoped zinc oxide. Appl. Surf. Sci. 258(10), 4455–4459 (2012)CrossRefGoogle Scholar
  22. 22.
    L.I. Burova, N.S. Perov, A.S. Semisalova et al., Effect of the nanostructure on room temperature ferromagnetism and resistivity of undoped ZnO thin films grown by chemical vapor deposition. Thin Solid Films 520(14), 4580–4585 (2012)CrossRefGoogle Scholar
  23. 23.
    S. Ghosh, G.G. Khan, S. Varma et al., Influence of film thickness and oxygen partial pressure on cation-defect-induced intrinsic ferromagnetic behavior in luminescent p-type Na-doped ZnO thin films. ACS Appl. Mater. Interfaces 5(7), 2455–2461 (2013)CrossRefGoogle Scholar
  24. 24.
    S. Mal, T.H. Yang, C. Jin et al., d0 Ferromagnetism in undoped ZnO thin films: effect of thickness, interface and oxygen annealing. Scr. Mater. 65(12), 1061–1064 (2011)CrossRefGoogle Scholar
  25. 25.
    P. Zhan, W. Wang, Z. Xie et al., Substrate effect on the room-temperature ferromagnetism in un-doped ZnO films. Appl. Phys. Lett. 101(3), 031913 (2012)CrossRefGoogle Scholar
  26. 26.
    S. Ning, P. Zhan, Q. Xie et al., Defects-driven ferromagnetism in undoped dilute magnetic oxides: a review. J. Mater. Sci. Technol. 31(10), 969–978 (2015)CrossRefGoogle Scholar
  27. 27.
    V.K. Jayaraman, A.M. Álvarez, M. Bizarro et al., Effect of acetic acid and water content in the spray solution on structural, morphological, optical and electrical properties of Al and In co-doped zinc oxide thin films. J. Mater. Sci. 29(18), 15321–15328 (2018)Google Scholar
  28. 28.
    S. Kuprenaite, T. Murauskas, A. Abrutis et al., Properties of In-, Ga-, and Al-doped ZnO films grown by aerosol-assisted MOCVD: influence of deposition temperature, doping level and annealing. Surf. Coat. Technol. 271, 156–164 (2015)CrossRefGoogle Scholar
  29. 29.
    M. Zamfirescu, A. Dinescu, M. Danila et al., The role of the substrate material type in formation of laser induced periodical surface structures on ZnO thin films. Appl. Surf. Sci. 258(23), 9385–9388 (2012)CrossRefGoogle Scholar
  30. 30.
    J. Tauc, Optical properties and electronic structure of amorphous Ge and Si. Mater. Res. Bull. 3(1), 37–46 (1968)CrossRefGoogle Scholar
  31. 31.
    H. Mahdhi, S. Alaya, J.L. Gauffier et al., Influence of thickness on the structural, optical and electrical properties of Ga-doped ZnO thin films deposited by sputtering magnetron. J. Alloy. Compd. 695, 697–703 (2017)CrossRefGoogle Scholar
  32. 32.
    K. Morigaki, Physics of Amorphous Semiconductors (Imperial College Press, Singapore, 1999)CrossRefGoogle Scholar
  33. 33.
    P. Zhang, C. Kong, W. Li et al., The origin of the ∼ 274 cm−1 additional Raman mode induced by the incorporation of N dopants and a feasible route to achieve p-type ZnO: N thin films. Appl. Surf. Sci. 327, 154–158 (2015)CrossRefGoogle Scholar
  34. 34.
    H. Morkoç, Ü. Özgür, Zinc Oxide: Fundamentals Materials and Device Technology (John Wiley & Sons, Hoboken, 2008)Google Scholar
  35. 35.
    R.S. Zeferino, M.B. Flores, U. Pal, Photoluminescence and Raman scattering in Ag-doped ZnO nanoparticles. J. Appl. Phys. 109(1), 014308 (2011)CrossRefGoogle Scholar
  36. 36.
    W.J. Li, C.Y. Kong, H.B. Ruan et al., Electrical properties and Raman scattering investigation of Ag doped ZnO thin films. Solid State Commun. 152(2), 147–150 (2012)CrossRefGoogle Scholar
  37. 37.
    W. Niu, H. Zhu, X. Wang et al., Identification of defect-related emissions in ZnO hybrid materials. Appl. Phys. Lett. 107(2), 021902 (2015)CrossRefGoogle Scholar
  38. 38.
    Z.Q. Chen, A. Kawasuso, Y. Xu et al., Microvoid formation in hydrogen-implanted ZnO probed by a slow positron beam. Phys. Review B 71(11), 115213 (2005)CrossRefGoogle Scholar
  39. 39.
    F. Friedrich, N.H. Nickel, Resonant Raman scattering in hydrogen and nitrogen doped ZnO. Appl. Phys. Lett. 91(11), 111903 (2007)CrossRefGoogle Scholar
  40. 40.
    H. Liu, F. Zeng, Y. Lin et al., Correlation of oxygen vacancy variations to band gap changes in epitaxial ZnO thin films. Appl. Phys. Lett. 102(18), 181908 (2013)CrossRefGoogle Scholar
  41. 41.
    H. Zeng, G. Duan, Y. Li et al., Blue Luminescence of ZnO nanoparticles based on non-equilibrium processes: defect origins and emission controls. Adv. Func. Mater. 20(4), 561–572 (2010)CrossRefGoogle Scholar
  42. 42.
    P. Zhan, Z. Xie, Z. Li et al., Origin of the defects-induced ferromagnetism in un-doped ZnO single crystals. Appl. Phys. Lett. 102(7), 071914 (2013)CrossRefGoogle Scholar
  43. 43.
    Z.G. Yin, N.F. Chen, Y. Li et al., Interface as the origin of ferromagnetism in cobalt doped ZnO film grown on silicon substrate. Appl. Phys. Lett. 93(14), 142109 (2008)CrossRefGoogle Scholar
  44. 44.
    D. Gao, Z. Zhang, Y. Li et al., Abnormal room temperature ferromagnetism in CuO-ZnO heterostructures: interface related or not? Chem. Commun. 51(6), 1151–1153 (2015)CrossRefGoogle Scholar
  45. 45.
    B. Kalisky, J.A. Bert, B.B. Klopfer et al., Critical thickness for ferromagnetism in LaAlO3/SrTiO3 heterostructures. Nat. Commun. 3, 922 (2012)CrossRefGoogle Scholar
  46. 46.
    N. Fontaíña-Troitiño, S. Liébana-Viñas, B. Rodríguez-González et al., Room-temperature ferromagnetism in antiferromagnetic cobalt oxide nanooctahedra. Nano Lett. 14(2), 640–647 (2014)CrossRefGoogle Scholar
  47. 47.
    G.Z. Xing, D.D. Wang, C.J. Cheng et al., Emergent ferromagnetism in ZnO/Al2O3 core-shell nanowires: towards oxide spinterfaces. Appl. Phys. Lett. 103(2), 022402 (2013)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Chongqing Key Laboratory of Photo-Electric Functional Materials, College of Physics and Electronic EngineeringChongqing Normal UniversityChongqingPeople’s Republic of China
  2. 2.College of PhysicsChongqing UniversityChongqingPeople’s Republic of China
  3. 3.Research Institute for New Materials TechnologyChongqing University of Arts and SciencesChongqingChina

Personalised recommendations