Advertisement

Study of γ-ray radiation influence on SiO2/HfO2/Al2O3/HfO2/Al2O3 memory capacitor by C–V and DLTS

  • Shu-rui Cao
  • Xiao-yu Ke
  • Si-ting Ming
  • Duo-wei Wang
  • Tong Li
  • Bing-yan Liu
  • Yao MaEmail author
  • Yun Li
  • Zhi-mei Yang
  • Min Gong
  • Ming-min Huang
  • Jin-shun Bi
  • Yan-nan Xu
  • Kai XiEmail author
  • Gao-bo Xu
  • Sandip Majumdar
Article
  • 53 Downloads

Abstract

Gamma-ray radiation effects on the SiO2/HfO2/Al2O3/HfO2/Al2O3 based charge trapping memory have been investigated. Capacitance–voltage (C–V) and deep level transient spectroscopy (DLTS) measurements were applied to study the change in electrical properties from total dose radiation. C–V results showed a negative shift of flat-band voltage while dc memory window degraded after gamma-ray radiation. For DLTS result, two original peaks were found degraded while two new peaks appeared after radiation. Both C–V and DLTS results show that Gamma ray leads to the degradation of trapping effect.

Notes

Acknowledgements

This paper is supported by the National Key R&D Plan through the Grant Number 2017YFN0405702, the National Natural Science Foundation of China under Grants 61704188 and 616340084.

References

  1. 1.
    M.H. White, D.A. Adams, J.R. Murray et al, Characterization of scaled SONOS EEPROM memory devices for space and military systems, non-volatile memory Technology Symposium IEEE, 51 (2004)Google Scholar
  2. 2.
    S. Gerardin, A. Paccagnella, Present and future non-volatile memories for space. IEEE Trans. Nucl. Sci. 57, 3016 (2010)Google Scholar
  3. 3.
    K.-H. Wu, H.-C. Chien, C.-C. Chan et al., SONOS device with tapered bandgap nitride layer. IEEE Trans. Electron Devices 52, 987 (2005)CrossRefGoogle Scholar
  4. 4.
    Y.K. Lee, K.W. Song, J.W. Hyun et al., Twin SONOS memory with 30-nm storage nodes under a merged gate fabricated with inverted sidewall and damascene process. IEEE Electron Device Lett. 25, 317 (2004)CrossRefGoogle Scholar
  5. 5.
    K. Honda, S. Hashimoto, Y. Cho, Visualization using scanning nonlinear dielectric microscopy of electrons and holes localized in the thin gate film of a metal–SiO2–Si3N4–SiO2–semiconductor flash memory. Appl. Phys. Lett. 86, 543 (2005)Google Scholar
  6. 6.
    J.G. Yun, Y. Young Kim, I.L. Han Park et al., Fabrication and characterization of fin SONOS flash memory with separated double-gate structure. Solid-State Electron. 52, 1498 (2008)CrossRefGoogle Scholar
  7. 7.
    C.H. Lee, S.H. Hur, Y.C. Shin et al., Charge-trapping device structure of SiO2∕SiN∕high-k dielectric Al2O3 for high-density flash memory. Appl. Phys. Lett. 86, 152908 (2005)CrossRefGoogle Scholar
  8. 8.
    Y.J. Seo, K. Kim, H.D. Kim et al., Correlation between charge trap distribution and memory characteristics in metal/oxide/nitride/oxide/silicon devices with two different blocking oxides. Appl. Phys. Lett. 93, 155 (2008)Google Scholar
  9. 9.
    J.L. Gavartin, D. Munoz Ramo, A.L. Shluger et al., Negative oxygen vacancies in HfO2 as charge traps in high-k stacks. Appl. Phys. Lett. 89, 082908 (2006)CrossRefGoogle Scholar
  10. 10.
    S. Bassi, M. Pattanaik, TID effects on retention of 0.13 μm SONOS memory cell: a device simulation approach, International Symposium on Vlsi Design and Test, 1 (2014)Google Scholar
  11. 11.
    F. Qiao, X. Yu, L. Pan et al, TID characterization of 0.13 µm SONOS cell in 4 Mb NOR flash memory, Physical and Failure Analysis of Integrated Circuits IEEE 96, 1 (2012)Google Scholar
  12. 12.
    M. Li, J.-S. Bi, Y.-N. Xu et al., Total ionizing dose effects of 55-nm silicon-oxide-nitride-oxide-silicon charge trapping memory in pulse and DC modes. Chin. Phys. Lett. 7, 078502 (2018)CrossRefGoogle Scholar
  13. 13.
    H. You, W. Cho, Charge trapping properties of the HfO2 layer with various thicknesses for charge trap flash memory, applications. Appl. Phys. Lett. 96, 093506 (2010)CrossRefGoogle Scholar
  14. 14.
    X.D. Huang, R.P. Shi, P.T. Lai, Charge-trapping characteristics of fluorinated thin ZrO2 film for nonvolatile memory applications. Appl. Phys. Lett. 104, 162905 (2014)CrossRefGoogle Scholar
  15. 15.
    P.H. Tsai, K.S. Changliao, C.Y. Liu et al., Novel SONOS-type nonvolatile memory device with optimal Al Doping in HfAlO charge-trapping layer. IEEE Electron Device Lett. 29, 265 (2008)CrossRefGoogle Scholar
  16. 16.
    N. Elatab, A. Rizk, A.K. Okyay et al., Zinc-oxide charge trapping memory cell with ultra-thin chromium-oxide trapping layer. AIP Adv. 3, 112116 (2013)CrossRefGoogle Scholar
  17. 17.
    C.Y. Tsai, T.H. Lee, C.H. Cheng et al., Highly scaled charge-trapping layer of ZrON nonvolatile memory device with good retention. Appl. Phys. Lett. (2010).  https://doi.org/10.1063/1.3522890 Google Scholar
  18. 18.
    H. Zhu, J.E. Bonevich, H. Li et al., Discrete charge states in nanowire flash memory with multiple Ta2O5 charge-trapping stacks. Appl. Phys. Lett. 104, 33 (2014).  https://doi.org/10.1063/1.4883717 Google Scholar
  19. 19.
    T.M. Pan, J.W. Chen, Metal-oxide-high-k-oxide-silicon memory structure using an Yb2O3 charge trapping layer. Appl. Phys. Lett. 93, 2048 (2008)Google Scholar
  20. 20.
    X.D. Huang, J.K.O. Sin, P.T. Lai, Fluorinated SrTiO3 as charge-trapping layer for nonvolatile memory applications. IEEE Trans. Electron Devices 58, 4235 (2011)CrossRefGoogle Scholar
  21. 21.
    J.A. Felix, D.M. Fleetwood, R.D. Schrimpf et al., Total-dose radiation response of hafnium-silicate capacitors. IEEE Trans. Nucl. Sci. 49, 3191 (2002)CrossRefGoogle Scholar
  22. 22.
    C. Demic, E.P. Gusev, R.D. Schrimpf et al., Radiation-induced charge trapping in thin Al2O3/SiOxNy/Si(100) gate dielectric stacks. IEEE Trans. Nucl. Sci. 50, 1910 (2003)CrossRefGoogle Scholar
  23. 23.
    J.S. Bi, Y.N. Xu, G.B. Xu et al., Total ionization dose effects on charge-trapping memory with Al2O3/HfO2/Al2O3 trilayer structure. IEEE Trans. Nucl. Sci. 65, 200 (2018)CrossRefGoogle Scholar
  24. 24.
    D.V. Lang, Fast capacitance transient appartus: application to ZnO and O centers in GaP p-n junctions. J. Appl. Phys. 45, 3014 (1974)CrossRefGoogle Scholar
  25. 25.
    A. Colder, M. Levalois, P. Marie, Study of electron, proton, and swift heavy ion irradiation of n-type germanium using deep level transient spectroscopy. J. Appl. Phys. 88, 3082 (2000)CrossRefGoogle Scholar
  26. 26.
    Y. Li, Y. Ma, W. Lin et al., Study of γ-ray irradiation influence on TiN/HfO2/Si MOS capacitor by C-V and DLTS. Superlattices Microstruct. 120, 313 (2018)CrossRefGoogle Scholar
  27. 27.
    C. Nyamhere, A.G.M. Das, F.D. Auret, Deep level transient spectroscopy characterization of defects introduced in p-Si by electron beam deposition and proton irradiation. J. Phys: Conf. Ser. 100, 042004 (2008)Google Scholar
  28. 28.
    P.N.K. Deenapanray, F.D. Auret, Deep level transient spectroscopy of defects introduced in Si and SiGe by low energy particles. J. Phys. Condens. Matter 15, S2859 (2003)CrossRefGoogle Scholar
  29. 29.
    M. González, C.L. Andre, R.J. Walters et al., Deep level defects in proton radiated GaAs grown on metamorphic Si Ge/Si. J. Appl. Phys. 100, 1055 (2006)Google Scholar
  30. 30.
    C. Zhu, Z. Huo, Z. Xu et al., Performance enhancement of multilevel cell nonvolatile memory by using a bandgap engineered high-κ trapping layer. Appl. Phys. Lett. 97, 25 (2010)Google Scholar
  31. 31.
    K. Yamasaki, M. Yoshida, T. Sugano, Deep level transient spectroscopy of bulk traps and interface states in Si MOS diodes. Jpn. J. Appl. Phys. 18, 113 (1979)CrossRefGoogle Scholar
  32. 32.
    Y.J. Seo, K.C. Kim, T.G. Kim et al., Analysis of electronic memory traps in the oxide-nitride-oxide structure of a polysilicon-oxide-nitride-oxide-semiconductor flash memory. Appl. Phys. Lett. 92, 4 (2008)Google Scholar
  33. 33.
    E. Yilmaz, I. Dogan, R. Turan, Use of Al2O3 layer as a dielectric in MOS based radiation sensors fabricated on a Si substrate. Nucl. Instrum. Methods Phys. Res. B 266, 4896 (2008)CrossRefGoogle Scholar
  34. 34.
    A.V.P. Coelho, M.C. Adam, H. Boudinov, Distinguishing bulk traps and interface states in deep-level transient spectroscopy. J. Phys. D 44, 305303 (2011)CrossRefGoogle Scholar
  35. 35.
    X. Li, C. Liu, J. Yang, Y. Zhao, G. Liu, Separation of ionization traps in NPN transistors irradiated by lower energy electrons. IEEE Trans. Nucl. Sci. 60, 3924 (2013)CrossRefGoogle Scholar
  36. 36.
    Y.-N. Xu, J.-S. Bi, G.-B. Xu et al., Total ionization dose effects on charge storage capability of Al2O3/HfO2/Al2O3-based charge trapping memory cell. Chin. Phys. Lett. 35, 118501 (2018)CrossRefGoogle Scholar
  37. 37.
    A.S. Grove, Physics and Technology of Semiconductor Devices (Wiley, New York, 1900)Google Scholar
  38. 38.
    D. Spassov et al., A comparative study of charge trapping in HfO2/Al2O3 and ZrO2/Al2O3 based multilayered metal/high-k/oxide/Si structures. Thin Solid Films 614, 7 (2016)CrossRefGoogle Scholar
  39. 39.
    L. Yang, Electrical characterization of deep trap properties in high-k thin-film HfO2. Chin. Phys. Lett. 27, 218 (2010)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Shu-rui Cao
    • 1
    • 3
    • 4
  • Xiao-yu Ke
    • 1
  • Si-ting Ming
    • 1
  • Duo-wei Wang
    • 1
  • Tong Li
    • 1
  • Bing-yan Liu
    • 1
  • Yao Ma
    • 1
    • 2
    Email author
  • Yun Li
    • 1
    • 2
  • Zhi-mei Yang
    • 1
    • 2
  • Min Gong
    • 1
    • 2
  • Ming-min Huang
    • 1
    • 2
  • Jin-shun Bi
    • 3
    • 4
  • Yan-nan Xu
    • 3
    • 4
  • Kai Xi
    • 3
    • 4
    Email author
  • Gao-bo Xu
    • 3
    • 4
  • Sandip Majumdar
    • 5
  1. 1.Key Lab of Microelectronics Sichuan Province, College of Physical Science and TechnologySichuan UniversityChengduChina
  2. 2.Key Laboratory of Radiation Physics and Technology of Ministry of EducationSichuan UniversityChengduChina
  3. 3.Institute of MicroelectronicsChinese Academy of SciencesBeijingChina
  4. 4.University of Chinese Academy of SciencesBeijingChina
  5. 5.Department of Science and TechnologyThe ICFAI UniversityAgartalaIndia

Personalised recommendations